

By processing the various forms of glass, the prism produces a special effect due to refraction. Since there is no angular offset that after manufacture, it is also used as a reference angle for accurate angle.

Application	Products		Sample of use
Reflecting light		Right Angle Prisms (RPB / RPSQ) Reference > B266	Substitute of the mirror, Reflector of the compact optical system.
Replacing the light		Corner Cube Prisms (CCB) Reference) B272 Hollow Retro-reflectors (RCCB)	Interferometer, Reflector, such as distance measurement
Dispersion wavelength		Equilateral Dispersing Prisms (DPB/DPSQ/DPTIH11) Reference) B274	Spectroscopic measurement, Dispersion compensation
Special effects		Dove Prisms (DOP) Reference >B276 Penta Prisms (PPB) Reference B277 Pellin-Broca prism (PBPQ) Reference B278	Rotate or flip the image

About Refraction and Critical angle

When the light is incident oblique angle on the glass, causing the refracted at the interface of the glass and air, the traveling direction of the light will change.
At this time, emission angle toward the side of the glass is smaller than the incident angle of the air.
If the refractive index of the glass can be seen, this relationship can be determined from Snell's law.
Then, even if the incident light is emitted at the same angle as the angle θ_{b} shown below the boundary surface of the glass, through the same path at all, it will be emitted to the air incident angle θ a.
However, if it will be incident at a large angle with the boundary surface from the side of the glass, then emitted to the air-side angle will exceed 90 degrees. It is called "critical" the emission angle of the air side when 90 degrees. It is called to be this angle "critical angle".
When the incident light from the glass boundary at an angle larger the critical angle θ_{r}, the light will not come out to the air causing total reflection.

Conditions for refraction

Snell's law

$$
\sin \theta_{\mathrm{a}}=\mathrm{n} \sin \theta_{\mathrm{b}}
$$

Conditions for Critical

Conditions for Critical angle
$\sin 90^{\circ}=n \sin \theta_{r}$

	BK7	Synthetic fused silica
Refractive index n_{d}	1.517	1.458
Critical angle θ_{r}	41.2°	43.3°

Application
Systems

Optics \&

Optical Coatings

Holders

Bases

Manual
Stages

Actuators

Motoeized
Stages

Light
Sources

Index

Guide
Mirrors
Beamsplitters
Polarizers
Lenses
Multi-Element Optics
Filters
Prisms
Substrates/Windows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Equilateral
Dispersing Prisms
Others

Right-angle prism can be used as a substitute for the mirror.

Independent even without a special holder, and since the choice of a variety of installation methods, it is useful if you want to reduce the size of the device. In addition, with very high accuracy and precision angle of the prism surface, it can also be used directly bonded to machined parts.

- RPB1 to 3 are used as a substitute for the mirror reflection of the slope.

RPB1 is coated with anti-reflection coating with two surfaces which the light is incident and emitted by using the critical angle prism reflection of the slope and the surface.
RPB2 are coated with reflective coating ($\mathrm{Al}+\mathrm{MgF}_{2}$) on the surface of slope.
RPB3 are the product which does not pass through the light reflected by the inclined surface of the interior of the prism, and there are three types.

- RPB4 can be used when you want to use the reflection of the two surfaces sandwiching the apex angle (right angle). RPB4 can be used as to when observe two opposite directions at the same time, or as a prototype orthogonal basis and so on.
- RPB5 are used in applications where light back at the same angle as the incident light with respect to the horizontal direction. And double pass interferometer is used in (such as self-correlator) auto correlator.

Polarizers

Lenses

Multi-Element Optics

Filters

Prisms
Substrates/Windows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Equilateral Dispersing Prisms

Others

Specifications	
Material	BK7 (Refractive index $\left.n_{\mathrm{d}}=1.517\right)$
Surface flatness of substrate	$\lambda / 4$
Angle accuracy	$\pm 1^{\prime}\left(90^{\circ}\right.$ or $\left.45^{\circ}\right)$
Coating	Broadband multi-layer AR coating for Visible Protected Aluminum (Al + Mg F 2)
Wavelength Range	$400-700 \mathrm{~nm}$
Surface Quality (Scratch-Dig)	$40-20$
Clear aperture	90% of Circle or Ellipse to Actual dimension for entrance and exit surface

Guide

Also available other than the production of the catalog, such as the size and the wavelength used.
-Prisms are also available without a coat. Reference B268

Attention

- A dimension measured is slightly shorter than the catalog size because it contains chamfer dimension. Dimensional tolerances are defined by the sides of the triangle with the slope and two bottom surface.
- If the light is incident on the slope from the air side, most of the light through the prism side and it reflects only part of the light.
If the incident light at an incident angle of 41 degrees or less (less than the critical angle) from the side of the glass which is no coating on the surface, will not be total reflection but part of the light is transmitted through the air side.
\rightarrow Sometimes when dirt or fingerprints on the surface with no coating, total reflection will not happen any more than the critical angle. Do not contact anything on the no coated surface.
Please use RPB5 in the range of 0 ± 5.7 degrees for the slope. Beyond this range, it will not be totally reflected.
- RPB2 are also reflected at an angle smaller than the critical angle by Al coating, but the reflectance will be lower to 12% less than the RPB1.

Typical Transmittance Data \& Typical Reflectance Data
T: Transmission R: Reflectance

The transmittane and the Anti-reflection effect of BK7

$\mathbf{A l}+\mathbf{M g F}_{2}$

Compatible Optic Mounts
PLH / KKD / SHA

Schematic

RPB1

RPB2

RPB3

RPB4

RPB5

45° with a coat		
Part Number	$\begin{aligned} & \mathrm{A}=\mathrm{B} \\ & {[\mathrm{~mm}]} \end{aligned}$	Laser Damage Threshold* [$\mathrm{J} / \mathrm{cm}^{2}$]
RPB1-05-550	5	4
RPB1-07-550	7	4
RPB1-10-550	10	4
RPB1-12.7-550	12.7	4
RPB1-15-550	15	4
RPB1-20-550	20	4
RPB1-25-550	25	4
RPB1-25.4-550	25.4	4
RPB1-30-550	30	4
RPB2-05-550	5	0.25
RPB2-07-550	7	0.25
RPB2-10-550	10	0.25
RPB2-12.7-550	12.7	0.25
RPB2-15-550	15	0.25
RPB2-20-550	20	0.25
RPB2-25-550	25	0.25
RPB2-25.4-550	25.4	0.25
RPB2-30-550	30	0.25
RPB3-05-550	5	0.25
RPB3-07-550	7	0.25
RPB3-10-550	10	0.25
RPB3-12.7-550	12.7	0.25
RPB3-15-550	15	0.25
RPB3-20-550	20	0.25
RPB3-25-550	25	0.25
RPB3-25.4-550	25.4	0.25
RPB3-30-550	30	0.25
RPB4-05-550	5	0.25
RPB4-07-550	7	0.25
RPB4-10-550	10	0.25
RPB4-12.7-550	12.7	0.25
RPB4-15-550	15	0.25
RPB4-20-550	20	0.25
RPB4-25-550	25	0.25
RPB4-25.4-550	25.4	0.25
RPB4-30-550	30	0.25
RPB5-05-550	5	4
RPB5-07-550	7	4
RPB5-10-550	10	4
RPB5-12.7-550	12.7	4
RPB5-15-550	15	4
RPB5-20-550	20	4
RPB5-25-550	25	4
RPB5-25.4-550	25.4	4
RPB5-30-550	30	4

* Laser pulse width 10 ns , repetition frequency 20 Hz

Application Systems

Optics \&
Optical Coatings

Holders

Bases

Manual
Stages

Actuators

Motoeized
Stages

Light Sources

Index

Guide
Mirrors
Beamsplitters
Polarizers
Lenses
Multi-Element Optics Filters

Prisms

Substrates/Windows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Equilateral
Dispersing Prisms
Others

It is a prism which is not coated and can be used in various applications, such as total internal reflection critical angle and wavelength dispersion. In addition, because it is possible to various coating on prism, it is possible to produce a prism optical element of which the wavelength customer use.

- In terms of angle tolerance and surface accuracy, there are three types for standard, simple and high-precision. And, there are two types of materials such BK7, and synthetic fused silica for using in UV region.
- With very high accuracy and precision angle of the prism surface, it can also be used directly bonded to machined parts.
- Independent even without a special holder, and since the choice of a variety of installation methods, it is useful as a substitute for the small mirror.

Schematic

Specifications	
Material	BK7 (Refractive Index $\left.n_{\mathrm{d}}=1.517\right)$ Synthetic fused silica (Refractive Index $n_{\mathrm{d}}=1.458$)
Clear aperture	90% of Circle or Ellipse to Actual dimension for entrance and exit surface

Guide

It is available other than the products which listed in the catalog.

Attention

A dimension measured is slightly shorter than the catalog size because it contains chamfer dimension. Dimensional tolerances are defined by the sides of the triangle with the slope and two bottom surface.
Surface reflectance of the critical angle is nearly 100% reflection. However, the reflectivity of the surface that emits or incident on the glass has a loss of about 8 percent.
Most of the light through the prism side, if the light is incident on the slopes from the air it will not be reflected only partially.
In BK7, when the incident light at an angle of 41 degrees or less (less than the critical angle) from the side of the glass, it will not be a total reflection on the part of the light is transmitted through the air for the slope in BK7. In synthetic fused silica at an angle of incidence of 43 degrees or less (less than the critical angle) will not be a total internal reflection.
Sometimes when dirt or fingerprints on the surface with no coating, total reflection will not happen any more than the critical angle. Do not contact anything on the no coated surface.

Typical Transmittance Data	T: Transmission

BK7 / Standard					
Part Number	$\begin{aligned} & A=B \\ & {[\mathrm{~mm}]} \end{aligned}$	Surface flatness of substrate	90°	45°	Surface Quality (Scratch-Dig)
RPB-01-4M	1	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-02-4M	2	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-03-4M	3	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-04-4M	4	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-05-4M	5	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-07-4M	7	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-10-4M	10	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-12.7-4M	12.7	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-15-4M	15	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-20-4M	20	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-25-4M	25	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-25.4-4M	25.4	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-30-4M	30	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-40-4M	40	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPB-50-4M	50	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5

Compatible Optic Mounts
PLH / KKD / SHA

BK7 / Simple					
Part Number	$\begin{aligned} & A=B \\ & {[\mathrm{~mm}]} \end{aligned}$	Surface flatness of substrate	90°	45°	Surface Quality (Scratch-Dig)
RPB-01-2L	1	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-02-2L	2	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-03-2L	3	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-04-2L	4	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-05-2L	5	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-07-2L	7	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-10-2L	10	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-15-2L	15	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-20-2L	20	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-25-2L	25	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-30-2L	30	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-40-2L	40	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPB-50-2L	50	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10

BK7 / High-precision

Part Number	$\begin{aligned} & A=B \\ & {[\mathrm{~mm}]} \end{aligned}$	Surface flatness of substrate	Angle accuracy		Surface Quality (Scratch-Dig)
			90°	45°	
RPB-05-10H	5	$\lambda / 10$	$\pm 5^{\prime \prime}$	$\pm 30^{\prime \prime}$	10-5
RPB-07-10H	7	$\lambda / 10$	$\pm{ }^{\prime \prime}$	$\pm 30 \prime$	10-5
RPB-10-10H	10	$\lambda / 10$	$\pm{ }^{\prime \prime}$	$\pm 30 \prime \prime$	10-5
RPB-15-10H	15	$\lambda / 10$	$\pm{ }^{\prime \prime}$	± 30 "	10-5
RPB-20-10H	20	$\lambda / 10$	$\pm 5^{\prime \prime}$	$\pm 30 \prime$	10-5
RPB-25-10H	25	$\lambda / 10$	$\pm{ }^{\prime \prime}$	± 30 "	10-5
RPB-30-10H	30	$\lambda / 10$	± 5 "	$\pm 30 \prime$	10-5
RPB-40-10H	40	$\lambda / 10$	$\pm{ }^{\prime \prime}$	$\pm 30 \prime \prime$	10-5
RPB-50-10H	50	$\lambda / 10$	$\pm 5^{\prime \prime}$	$\pm 30^{\prime \prime}$	10-5

Synthetic fused silica / Standard					
Part Number	$\begin{aligned} & A=B \\ & {[\mathrm{~mm}]} \end{aligned}$	Surface flatness of substrate	90°	45°	Surface Quality (Scratch-Dig)
RPSQ-05-4M	5	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPSQ-07-4M	7	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPSQ-10-4M	10	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPSQ-12.7-4M	12.7	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPSQ-15-4M	15	$\lambda / 4$	$\pm 1^{\prime}$	± 1 '	10-5
RPSQ-20-4M	20	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPSQ-25-4M	25	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPSQ-25.4-4M	25.4	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
RPSQ-30-4M	30	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5

Mirrors Beamsplitters
 Polarizers

Multi-Element Optics

Filters

Prisms

Synthetic fused silica / Simple					
Part Number	$\begin{aligned} & A=B \\ & {[\mathrm{~mm}]} \end{aligned}$	Surface flatness of substrate	90°	45°	Surface Quality (Scratch-Dig)
RPSQ-05-2L	5	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPSQ-07-2L	7	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPSQ-10-2L	10	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPSQ-15-2L	15	$\lambda / 2$	± 3	$\pm 3^{\prime}$	20-10
RPSQ-20-2L	20	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPSQ-25-2L	25	$\lambda / 2$	± 3 '	$\pm 3^{\prime}$	20-10
RPSQ-30-2L	30	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10
RPSQ-40-2L	40	$\lambda / 2$	$\pm 3^{\prime}$	± 3 '	20-10
RPSQ-50-2L	50	$\lambda / 2$	$\pm 3^{\prime}$	$\pm 3^{\prime}$	20-10

Synthetic fused silica / High-precision

Part Number	$\begin{aligned} & A=B \\ & {[\mathrm{~mm}]} \end{aligned}$	Surface flatness of substrate	Angle accuracy		Surface Quality
			90°	45°	(Scratch-Dig)
RPSQ-05-10H	5	$\lambda / 10$	$\pm 5^{\prime \prime}$	± 30 "	10-5
RPSQ-07-10H	7	$\lambda / 10$	$\pm{ }^{\prime \prime}$	$\pm 30 \prime \prime$	10-5
RPSQ-10-10H	10	$\lambda / 10$	± 5 "	$\pm 30 /$	10-5
RPSQ-15-10H	15	$\lambda / 10$	± 5 "	± 30 "	10-5
RPSQ-20-10H	20	$\lambda / 10$	$\pm{ }^{\prime \prime}$	± 30 "	10-5
RPSQ-25-10H	25	$\lambda / 10$	± 5 "	± 30 "	10-5
RPSQ-30-10H	30	$\lambda / 10$	$\pm 5^{\prime \prime}$	$\pm 30^{\prime \prime}$	10-5

It is a prism which was sharply polished the right angle ridge line between the two bottom surfaces.

Application Systems

 Optics \&Optical Optical
Coatings

Holders

Bases

Manual
Stages

Actuators
Motoeized
Stages
Light
Sources

Index

Guide
 Mirrors

Beamsplitters

Polarizers

Lenses

Filters

Prisms
Substrates/Windows
Optical Data

Maintenance

Selection Guide

45 Degrees Angle
Retro-reflectoes
Equilateral Dispersing Prisms Others

- With a No coat type (KRPB), when using light in the range of 0 ± 5.7 degrees angle of incidence to the slope surface, the total reflection critical angle is obtained.

Outline Drawing (in mm)

Chamfered, the entire circumference of the ridge crest except right angles $<\mathrm{C} 0.2(\mathrm{~A} \leqq 15)$ $<\mathrm{CO} .3(20 \leqq \mathrm{~A})$

Specifications	
Material	BK7 (Refractive Index $n_{d}=1.517$)
Ridge Processing	Right-angle ridge: Knike edge (Not chamfered) Other ridge: Chamfered
Clear aperture	90\% of Circle or Ellipse to Actual dimension for entrance and exit surface

Guide

It is available other than the products which listed in the catalog.

Attention

Knife-edge ridge right angle is very easy missing. So please carefully handled so as not to come into contact with others.
-Part of the knife edge will not be able to wipe the lens, such as paper. Use an air blower for the small dusts.

- A dimension measured is slightly shorter than the catalog size because it contains chamfer dimension. Dimensional tolerances are defined by the sides of the triangle with the slope and two bottom surface.
- KRPB (with a no coat), the reflectance of the reflection above the critical angle is nearly 100%, there is a loss of about 8% in the reflection of the input and the exit surface of the prism.
Sometimes when dirt or fingerprints on the surface with no coating, total reflection will not happen any more than the critical angle. Do not contact anything on the no coated surface.

Specifications					
Part Number	$\begin{aligned} & \mathrm{A}=\mathrm{B} \\ & {[\mathrm{~mm}]} \end{aligned}$	Surface flatness of substrate	Angle accuracy		Surface Quality
			90°	45°	(Scratch-Dig)
KRPB-10-4M	10	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
KRPB-15-4M	15	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
KRPB-20-4M	20	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
KRPB-25-4M	25	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
KRPB-30-4M	30	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	10-5
KRPB-10-10H	10	$\lambda / 10$	$\pm 5^{\prime \prime}$	$\pm 30^{\prime \prime}$	10-5
KRPB-15-10H	15	$\lambda / 10$	$\pm 5^{\prime \prime}$	$\pm 30 \prime \prime$	10-5
KRPB-20-10H	20	$\lambda / 10$	$\pm 5^{\prime \prime}$	$\pm 30 \prime$	10-5
KRPB-25-10H	25	$\lambda / 10$	$\pm 5^{\prime \prime}$	$\pm 30 \prime$	10-5
KRPB-30-10H	30	$\lambda / 10$	$\pm 5^{\prime \prime}$	$\pm 30^{\prime \prime}$	10-5

	Typical Transmittance Data
T: Transmission	

Transmittance Data for BK7

It is a prism which was sharply polished the right angle ridge line across the bottom of the two sides. It is a prism which was sharply polished the right angle ridge line between the two bottom surfaces.

- With a coat type (KRPB4), it can be used such as divergent light or light incident angle wider than ± 5.7 degrees, the observation system is suitable for a wide field of view.

Outline Drawing (in mm)

Specifications

Material	BK7 (Refractive Index $n_{d}=1.517$)
Ridge Processing	Right-angle ridge: Knike edge (Not chamfered) Other ridge: Chamfered
Coating	2-surface that make up the right angle: Al+MgF2 (Protected Aluminum), Obliquity: Uncoating
Laser Damage Threshold	0.25J/cm (Laser pulse with 10ns, repetition frequency 20Hz)
Clear aperture	90% of Circle or Ellipse to Actual dimension for entrance and exit surface

Guide

It is available other than the products which listed in the catalog.

Attention

Knife-edge ridge right angle is very easy missing. So please carefully handled so as not to come into contact with others.
Part of the knife edge will not be able to wipe the lens, such as paper. Use an air blower for the small dusts.

- A dimension measured is slightly shorter than the catalog size because it contains chamfer dimension. Dimensional tolerances are defined by the sides of the triangle with the slope and two bottom surface.
KRPB4 is reflected in a wide angle than the degree of ± 5.7 by Al coat, however, its reflectivity (about 12% surface 1) is lower than 23% or more KRPB.

Specifications					
Part Number	$\begin{aligned} & A=B \\ & {[\mathrm{~mm}]} \end{aligned}$	Surface flatness of substrate	Angle accuracy		Surface Quality (Scratch-Dig)
			90°	45°	
KRPB4-10-550	10	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	40-20
KRPB4-15-550	15	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	40-20
KRPB4-20-550	20	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	40-20
KRPB4-25-550	25	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	40-20
KRPB4-30-550	30	$\lambda / 4$	$\pm 1^{\prime}$	$\pm 1^{\prime}$	40-20

Application
Systems
Optics \&

Holders

Bases

Manual
Stages

Actuators

Motoeized
Stages

Light Sources

Index

Guide

Mirrors

Beamsplitters
Polarizers
Lenses
Multi-Element Optics

Filters

Prisms
Substrates/Windows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Equilateral
Dispersing Prisms

Others

Reflectance Data for $\mathrm{Al}+\mathrm{MgF}_{2}$

The corner cube can reflect the incident light back its original source. It is used in length measurement system as its reflector. It has been designed for measuring the distance between the moon and the earth, when Apollo spaceship reached the moon, corner cube was set on the surface of the moon for scientific research use.

- The corner cube is fabricated under high precision process; it can assure the reflection of high accuracy light.
- In measurement process, even the corner cube light is slightly inclined; the reflective light inclination stays unchanged and reflects back to the measurement system.
- To assure a low light power lost, we are also offering AR optical coating CCB-M.

Holders

Bases

Manual
Stages

Actuators

Motoeized
Stages
Light
Sources
Index

Guide
Mirrors
Beamsplitters
Polarizers
Lenses
Multi-Element Opicics

Filters

Prisms
SubstratesWindows
Optical Data
Maintenance

Selection Guide

45 Degrees Angle
Retro-reflectoes
Equilateral
Dispersing Prisms

Others

Schematic

Outline Drawing (in mm)

Part Number	$\begin{gathered} \text { Diameter } \phi \mathrm{D} \\ {[\mathrm{~mm}]} \end{gathered}$	Height H [mm]
CCB-10	\$10	8.6
CCB-15	¢15	11.4
CCB-20	¢20	15.6
CCB-25	¢25	19.0
CCB-30	¢30	22.7
ССВ-50	¢50	36.5

Specifications	
Material	BK7
Accuracy on the side of the aperture	$\lambda / 4$
Angular deviation of beam	$<5^{\prime \prime}$
Coating	CCB: Uncoated CCB-M: Broadband multi-layer AR coating for Visible (BMAR)
Incident angle	$\pm 20^{\circ}$ (Range obtained by Total reflection Critical Angle)
Surface Quality (Scratch-Dig)	$40-20$
Clear aperture	90% of actual aperture

Guide

- We are also offering hollow retroreflector (RCCB) which can assure incident angle of 20 degrees without change in reflection light power. Reterence\B273

Attention

- The corner cube reflects light back to its source at high precision. If the incident light position is slide from the incident center; the reflected light will also be slide at the similar distance.
Protect the uncoated surfaces from fingerprint or dirt, it affects the reflection even at the critical angle.
- The phase difference may occur at all reflective surfaces, the polarization characteristic of the relfected light may change. For low polarization characteristic change, we recommand to use hollow retroreflector (RCCB). Reierence】B273

Multi-layer anti-reflection coating			

* Laser pulse width 10 ns , repetition frequency 20 Hz

Corner Cube Prism Holders | KUA

We are provide holder made specifically for this corner cube, please ask our International Sales Division.

The hollow retro-reflector is similar to the corner cube; it reflects the incident light back to its original source. This is made of a high precision assembly of 3 flat mirrors; insensitive of chromatic dispersion of the refractive index of glass and the absorptive of glass.

- The hollow is fabricated under high precision process; it can assure the reflection of high accuracy light.
- Can be used at broad wavelength range from UV to IR.
- Since there is no glass chromatic dispersion, the position of the back incident beam does not change in certain wavelength.
- With a small polarization effects, it is recommended to use in multiple interferometer optical path.

Specifications	
Material	BK7
Material of frame	Aluminum Finishing: Black anodized
Coating	Aluminum (No Protected Coating)
Laser Damage Threshold	$0.25 \mathrm{~J} / \mathrm{cm}^{2}$ (Laser pulse with 10ns, repetition frequency 20Hz)
Surface Quality (Scratch-Dig)	$40-20$

Guide

We have specific holders designed for this hollow retro-reflector, please ask our International Sales Division.
For high reflective type, we are proposing the corner cube CCB. Reference) B272

Attention

The corner cube reflects light back to its source at high precision. If the incident light position is slide from the incident center; the reflected light will also be slide at the similar distance.
Reflection on aluminum mirror may have some polarization effects.
Avoid using optical cleaning tissue for the surface cleaning; there is no protection layer on the top of the aluminum coating. Please use air-blow type of cleaner.
The aluminum reflectance index is about 85% to 90%. The hollow reflect on 3 surfaces, therefore the back incident light reflectance performance is at 61% tp 73%.

Typical Transmittance Data
R: Reflectance
Reflectance Data for Aluminum (surface reflection)

Specifications			
Part Number	Clear aperture [mm]	Angular deviation of beam ["]	Wavefront aberration
RCCB-10-10	$\phi 8$	<10	1 λ
RCCB-10-30	¢8	<30	2λ
RCCB-20-5	¢18	<5	1λ
RCCB-20-30	¢18	<30	2λ
RCCB-30-5	¢27	<5	1入
RCCB-30-30	¢27	<30	2λ

Application Systems

 wavelength and emerges as a spectrum from the opposite face.

Schematic

Outline Drawing (in mm)

Specifications			
Part Number	DPB	DPSQ	DPTIH11
Material	BK7	Synthetic fused silica	S-TIH11 equivalent
Refractive index n_{d}	1.517	1.458	1.785
Minimum deviation	49.3°	$46.8{ }^{\circ}$	$66.4{ }^{\circ}$
Abbe number $V_{d}{ }^{*}$	64.1	67.8	25.7°
Angle	$60^{\circ} \pm 3^{\prime}$		
Surface flatness of substrate	$\lambda / 10$		$\lambda / 4$
Surface Quality (Scratch-Dig)	20-10		40-20
Clear aperture	Circle or ellipse inscribed in a rectangular of 90% of the dimensions A and B		

* Abbe number $\quad V d=\frac{n_{d}-1}{n_{F}-n_{c}} \quad \begin{aligned} & n_{d} \text { : Refractivity of } 587.6 \mathrm{~nm} \text { wavelenght } \\ & n_{F}: \text { Refractivity of } 486.1 \mathrm{~nm} \text { wavelenght }\end{aligned}$
n_{n} : Refractivity of 656.3 nm wavelenght

Guide

Fixed to the prism, Prism Holder (PLH) are available. Reterence) C048
Other sizes are available upon production of the catalog.

Attention

Every edge of these prisms is chamfered (beveled) for chipping prevention. The dimensions of these prisms are values not including chamfer.
Be sure to wear laser safety goggles when checking optical path and adjusting optical axis.
$\begin{array}{r}\text { Selection Guide } \\ \hline 45 \text { Degrees Angle }\end{array}$
Retro-reflectoes
Equilateral Dispersing Prisms Others

Equilateral dispersing prisms disperse a light into its different colors and are used for spectrum analyzing experiments and instruments. Each colors in the light incident at an oblique angle to the first face is bent in different angle by the difference of refractive index of the glass according to

- The roof angle of 60 degrees causes the best combination of wide dispersion and low reflection losses. A glass with large
- We offer both BK7 and fused silica for a selection of wavelength range from UV to near IR. We recommend a prism of BK7 if the light is not UV, because the angular dispersion of BK7 is larger than that of fused silica.
- In case of DPTIH1, it has a large wavelength dispersion of the refractive index and can observe the spectrum efficiently.

BK7	
Part Number	A = B $[\mathrm{mm}]$
DPB-20-10H	20
DPB-25-10H	25
DPB-30-10H	30

Synthetic fused silica	
Part Number	A=B
[mm]	

S-TIH11	
Part Number	A $=$ B $[\mathrm{mm}]$
DPTIH11-20-4H	20
DPTIH11-25-4H	25
DPTIH11-30-4H	30

Bases
Manual
Stages

Actuators

Motoeized
Stages

Light
Sources

Index

Guide

Mirrors

Beamsplitters
Polarizers
Lenses
Multi-Element Optics

Filters

Prisms
Substrates/Windows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Glass refractive index measurement method of minimum deviation
The refractive index of optical glass is accurately measured by the angle measuring device called a goniometer.
Accurately measuring the refractive index for each wavelength with the known wavelength of the emission spectrum of the lamp is emitted. Wavelength dispersion of the refractive index is determined by the results of this measurement.

$$
\mathrm{n}=\frac{\sin \left(\frac{a+\delta}{2}\right)}{\sin \left(\frac{a}{2}\right)}
$$

Application Systems

 Optics \&Optical Optical
Coatings
Holders
Bases

Manual
Stages

Actuators
Motoeized
Stages

Sources

Index

Guide
 Mirrors

Beamsplitters
Polarizers

Lenses

Multi-Element Opics

Filters

Prisms
SubstratesWindows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Equilateral Dispersing Prisms

Others

Observe an image through the dove prism; you will see the image in inversion. Moreover, when you turn the prism the image will be turning around 2 times. The dove prism is widely used in where images inversion adjustment is needed.

- This is made with high fabrication process; there is no light incident axis deviation.
- The bore $(A \times B)$ of the length (D) has been designed and manufactured with high precision with no crack occur.

Outine Drawing (in mm)

Specifications	
Material	BK7 $\left(\mathrm{n}_{\mathrm{d}}=1.517\right)$
Inclination angle	$45^{\circ} \pm 3^{\prime}$
Coating	DOP-4: Uncoated DOP-4M: Broadband multi-layer AR coating
Surface Quality (Scratch-Dig)	$20-10$
Clear aperture	Circle or ellipse inscribed in a rectangular of 90% of the dimensions A and B

Guide
$>$ AR coating on incident surface and emitting surface and aluminum coat on lower surface can be done as an option. Please contact our International Sales Division.

Attention

When the prism is on the upright image position, the right and left side images are on mirror symmetry.

- The chromatic aberration may happen when observation of image at high magnification through the dove prism.
The dimension of the D side mention in the catalog could be smaller in real due to the chamfer. The tolerance of the dimension of the bottom of the both slope side of the prism is taken as standard. If dirt is found on the bottom surface of the dove prism (uncoated side), the dirt can be captured into the image.

Specifications			
Part Number	$\begin{aligned} & A=B \\ & {[\mathrm{~mm}]} \end{aligned}$	Length D [mm]	Surface flatness of substrate
DOP-10-4	10	42.2	$\lambda / 4$
DOP-15-4	15	63.3	$\lambda / 4$
DOP-20-4	20	84.4	$\lambda / 4$
DOP-25-4	25	105.5	$\lambda / 4$
DOP-30-4	30	126.6	$\lambda / 4$
DOP-10-4M	10	42.2	$\lambda / 4$
DOP-15-4M	15	63.3	$\lambda / 4$
DOP-20-4M	20	84.4	$\lambda / 4$
DOP-25-4M	25	105.5	$\lambda / 4$
DOP-30-4M	30	126.6	$\lambda / 4$

Dove Prism Holders | DBH

Dove prism mounted with turnable holder. The rotation center of the optics and the holder is adjustable.
\square M6 P1

Part Number	$\phi \mathrm{A}[\mathrm{mm}]$	$\phi \mathrm{B}[\mathrm{mm}]$	$\mathrm{C}[\mathrm{mm}]$	$\mathrm{D}[\mathrm{mm}]$	$\mathrm{E}[\mathrm{mm}]$
DBH-10	$\phi 59$	$\phi 34$	66	39	30
DBH-30	$\phi 94$	$\phi 64$	152	80	46.5

Specifications			Primary material: Aluminum Finish: Black Anodized
Part Number	Part number of optics included	Sensitivity $\left[{ }^{\circ}\right]$	Weight $[\mathrm{kg}]$
DBH-10	DOP-10-4	1	0.0
DBH-30	DOP-30-4	1	-1.3

By reflecting twice in the mirror, it converts the image of the same object and erect a reflection image of mirror symmetry. To avoid the image mirror symmetry, digitized before the camera, the light rays are bent at a right angle from the object using a penta prism. It is also used as the basis of the device perpendicular by the laser positioning marking.

- The incident angle of the prism is changed, then always emitted at 90 degrees for the incident light.
- You can compact the whole better to use the internal reflection prism than using two mirrors of the angle deviation is not generated.

Schematic

Observed image by penta prism

Observed image by right-angle prism (mirror symmetry)

Specifications	
Material	BK7
Surface flatness of substrate	$\lambda / 4$
Angle tolerance	$\pm 3^{\prime}$
Surface Quality (Scratch-Dig)	$40-20$
Coating	Aluminum coating + Black Paint MgF2 Single-layer anti-reflection coating
Clear aperture	Circle inscribed in a square of 90% of the dimensions A

Attention

There is a possibility to take the black ink will melt if wiped with a solvent.

- There is a loss with Aluminum coating of about 12% in the singleside, and 23% in both side reflectance internal reflection of prism. Input and output efficiency will be about 77%.

Specifications		A $[\mathrm{mm}]$
Part Number	10	C $[\mathrm{mm}]$
PPB-10-4	15	10.8
PPB-15-4	20	16.0
PPB-20-4	25	23
PPB-25-4	-10	

Custom-made

This is the incident angle of the prism apex angle of the prism was adjusted so that the dispersion was Brewster angle p-polarized light reflection angle is zero. It can be used as the wavelength selection prism used in the tunable laser resonator.

- If linearly polarized light (polarized light P), is suppressed by the reflection loss for both the incident surface and the exit surface, the incident beam has a high transmission efficiency can be obtained.
- Brewster angle are computed from the refractive index with wavelength and use of glass material, it must be always specified wavelength and using glass materials.
- Brewster prism dispersion is coated littrow type to total reflection and transmission type.
- When ordering, please use the Contact sheet in the catalog for the custom prism.

Schematic

Transparent type

Littrow type

Pellin Broca prism is a one of the dispersing Brewster prism and is characterized to emit in the direction of perpendicular to the incident. When the incident at Brewster angle a YAG laser, it is possible to separate the second harmonic generation beam (532 nm) and the fundamental harmonic generation beam (1064 nm).

- Since it is using the Brewster angle and the critical angle, reflection losses will not occur, and a high transmittance can be obtained.
- Because there is no coating on the surface with Pellin Broca prism, it will also be used in high energy pulsed laser.
- This is used to fit the (Brewster angle) angle of light intensity of the beam of light (invisible) of the YAG fundamental harmonic generation and second harmonic generation beam reflected by the prism incident surface is minimized.
- Make sure to use to be converted so as to be parallel to the bottom surface of the prism is the polarization direction of the laser beam.
- It can also be used for multi-wavelength oscillation laser spectroscopy of Argon laser.

Outline Drawing

(in mm)

Chamfer Ridge line about C0. 3 (No chamfer obtuse angle)

Specifications	
Material	Synthetic fused silica
Design wavelength	706 nm (intermediate of 532nm and 1063nm)
Angle accuracy	$<3^{\prime}$
Surface flatness of substrate	$\lambda / 10$
Surface Quality (Scratch-Dig)	$20-10$
Clear aperture	Circle or ellipse inscribed in a rectangular of 90% of the dimension size

Guide

- Perrin blocker prism can also be produced on request to suit for the wavelengths of the laser.
$>$ Other sizes are available upon production of the catalog.

Attention

Because it deviates from the Brewster angle, the beam emitted from the ultraviolet wavelength is not a non-reflective.
\rightarrow Although it can also be used as a dispersing prism of non-polarized light, and not allowed to enter in the Brewster angle, it is not emitted at right angles to the incident angle.
It can also be dispersed incident S polarized laser beam, reflection loss occurs in the incident surface and the exit surface.
\rightarrow Fingerprints and dirt adhering to the surface of no coated, the effect of the total reflection or no reflection can not be obtained. Please use without touching anything on the surface is not coated.
\rightarrow A and B dimension is slightly shorter than the actual catalog because it contains chamfer dimension. Dimensional tolerances are defined at the intersection of each side that does not include a chamfer.

Schematic

Equivalent optical system
Prisms

Angular dispersion of YAG Laser Brewster wavelength 1064 nm 532 nm Incident angle (Brewster angle) $\left[{ }^{\circ}\right]$ 55.39 55.61 Output angle [${ }^{\circ}$] 1064 nm 54.93 532 nm 56.30 355 nm 58.09 $\mathrm{266nm}$

Specifications

$\left.\begin{array}{l|ccccc}\text { Part Number } & \begin{array}{c}\mathrm{A} \\ {[\mathrm{mm}]}\end{array} & \begin{array}{c}\mathrm{B} \\ {[\mathrm{mm}]}\end{array} & \begin{array}{c}\mathrm{C} \\ {[\mathrm{mm}]}\end{array} & \begin{array}{c}\theta_{1} \\ {\left[{ }^{\circ}\right]}\end{array} & \theta_{2} \\ {\left[{ }^{\circ}\right]}\end{array}\right]$

[^0]

Schematic

Specifications	
Material	$\mathrm{BK7}$, Synthetic fused silica
Angle accuracy	$120^{\circ} \pm 5^{\prime}$
Parallelism	5^{\prime}
Coating	Uncoated (Including the sides)
Recommended incident numerical aperture (NA)	>0.5
Surface Quality (Scratch-Dig)	$60-40$

Guide

Dedicated adapter (LPH-ADP) is available to attach the light pipe to the lens holder and the mirror holder.

Attention

Since it is totally reflected at the side, reflectance may extremely get worse if fingerprints and dirt are at the side. And it may cause an unevenness in the brightness distribution of the emitted light.
It can not be used in collimated light. Please use by being incident a large light of collection angle (divergence angle)

- Anti-reflection coating is not attached on both end faces. For this reason, by the reflection (4\%) of both end faces, transmittance loss of $7-8 \%$ occurs.

(in mm)

Specifications				
Part Number	Material	Opposite side distance $\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { Rod length } \\ \text { L } \\ {[\mathrm{mm}]} \end{gathered}$	surface flatness of polished surface
LPB-05L30	BK7	5	30	λ
LPB-10L75	BK7	10	75	3λ
LPSQ-05L30	Synthetic fused silica	5	30	λ
LPSQ-10L75	Synthetic fused silica	10	75	3λ

Light pipe adapter | LPH-ADP

This is the adapter for fixing the light pipe (LPB / LPSQ) and attaching to the mirror holder and lens holder.

- It can fix the light pipe without contacting the polished surface of the light pipe.
- Because of the resin attached, scratches can not occur to the light pipe.

Part Number	$\phi \mathrm{A}$ $[\mathrm{mm}]$	$\phi \mathrm{B}$ $[\mathrm{mm}]$	C $[\mathrm{mm}]$
LPH-ADP-05	$\phi 20$	$\phi 16$	9
LPH-ADP-10	$\phi 30$	$\phi 20$	14

Application Systems

Optics \&

Index

Filters

Prisms
Substrates/Windows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Equilateral Dispersing Prisms
Others

Specifications	
Part Number	Compatible optics
LPH-ADP-05	LPB-05L30, LPSQ-05L30
LPH-ADP-10	LPB-10L75, LPSQ-10L75

Parabolic lens of internal reflection type is an optical element that, with incident lights from various directions reflected at the streamlined side surface, can collect the lights on the emitting end surface. It is used as a collector of solar cells.

- If it is the parallel light of 25° or less as an incident angle, it is possible to collect efficiently the light at the emitting end surface even though the incident from any directions occurs.
- Since it is used the internal reflection of the glass, the configuration can be simplified compared with the lens system.
- By using the press molding technique of the glass lens, it achieved both high performance and low cost.

Application Systems

Optics \& Optical

 CoatingsHolders

Bases

Manual
Stages

Actuators

Motoeize Stages

Light Sources

Index

Guide

Mirrors

Beamsplitters
Polarizers
Lenses
Multi-Element Opicics
Filters
Prisms
SubstratesWindows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Equilateral
Dispersing Prisms
Others

Schematic

Specifications
Material
Coating
Allowable acceptance angle
25°
Surface Quality (Scratch-Dig)
* B270® is a registered trademark of SCHOTT AG.
Side end surface (non-spherical): 160-50
Guide
It is available for the production of anti-reflection coating on both
end surfaces on demand.
Other sizes are available excepting catalog products.

Attention

Since it is totally reflected at the side (non-spherical), reflectance may extremely get worse if fingerprints and dirt are at the side.

- The reflectance of the side is 99% or more, but since anti-reflection coating is not applied in the incident surface and emitting surface, the reflection loss of about 4\% occurs.
Light emitted from the end surface diverges largely and randomly without condensing to one point. Therefore, it can not be used for the application of the focused beam and collimated beam.

```
Outine Drawing
(in mm)
```


Formula for Aspheric
$Z(x)=1+\frac{C x^{2}}{\sqrt{1-(1+K) C^{2} x^{2}}}+a^{2} x^{2}+a^{4} x^{4}+a^{6} x^{6}+a^{8} x^{8}+a^{10} x^{10}+a^{12} x^{12}$

Coefficient	Numerical value
C	-0.00661615
K	21.98945555
a^{2}	$6.634803136 \times 10^{-4}$
a^{4}	$-3.044342187 \times 10^{-6}$
a^{6}	$6.004115152 \times 10^{-9}$
a^{8}	$-1.208582175 \times 10^{-11}$
a^{10}	$1.189971496 \times 10^{-14}$
a^{12}	$-5.290757204 \times 10^{-18}$

As an optical device for the LCD TV and the display of the mobile terminal, it is used when changing the incident direction or diffusing a light source that there is directional.

- Since the prism is processed directly to an acrylic plate of 2 mm thickness, the performance is stable and not easily deformed.
- There are two types of 0.03 mm and 0.05 mm pitch of the prism line.
- It can also be used as a Fresnel prism (prism plane).

Outline Drawing (in mm)

Specifications	
Material	CLAREX
Refractive Index	1.49
Tip Angle	45°

* CLAREX is a registered trademark of Nitto Jushi Kogyo Co., Ltd.

Guide

It is available for the prism sheet other than 45°.
It is also available for the production of prism sheet size on demand.
-The prism surface looks jagged when observing the reflected light. (Reflection that looks pretty is a real surface)

Attention

-There is a directional nature in the prism sheet. If it is desired to diffuse the light in two dimensions, please use crossed two prism sheets.
-There is a wavelength dispersion in the prism sheet. When using a small width light source such as a fluorescent lamp. A chromatic dispersion (Rainbow) occurs.
When strongly rubbing the processed surface of the prism, the performance may be degraded. Please do not directly touch the processed surface.

- It can be deformed when exposed to high temperature of 80 degrees or more and the performance can be severely affected.
Do not use organic solvents such as acetone and chloroform. Prism structure will be broken by dissolving.
It is delivered that protection sheet is affixed to the surface, please use peel it off.

Specifications	
Part Number	Prism pitch $[\mathrm{mm}]$
PRS-100S02-0.05	0.0
PRS-100S02-0.03	0.03

Application
Systems
Optics \&

Holders

Bases

Manual
Stages

Actuators

Motoeized
Stages

Light Sources

Index

Guide

Mirrors

Beamsplitters
Polarizers
Lenses
Multi-Element Optics

Filters

Prisms

Substrates/Windows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Equilateral
Dispersing Prisms
Others

Contact sheet

Application Systems

Optics \&
Optical Coatings

Holders

Bases

Manual
Stages

Actuators

Motoeized
Stages

Light
Sources

Index

Guide
Mirrors
Beamsplitters
Polarizers
Lenses
Multi-Element Optics

Filters

Prisms
Substrates/Windows
Optical Data
Maintenance

Selection Guide
45 Degrees Angle
Retro-reflectoes
Equilateral Dispersing Prisms
Others

It is also available for custom fabrication of a prism of which size is different in the catalog.
Simply fill in the inquiry sheet specifications, and please send us a fax or by e-mail.
We will contact you by return and confirm the specification.
Contact sheet for Special Order for Prism
Estimation OOrder
Date
To: Sigma Koki Co., Ltd. FAX +81-3-5638-6550

Sigma Koki Co., Ltd.

In addition to the catalog product, it can also be produced the special specifications such as the following.
[Examples of custom prism]

3D degrees total internal reflection prism

[^0]: It is an optical element for the illumination of uniform brightness distribution from a light having a non-uniform brightness distribution. It is used for the illumination optical system for image processing, and for converting the Gaussian profile to a top-hat profile.

 - It uses a hexagonal prism type with highly uniform efficiency than rectangular prism.
 - There is a line up of the compact type of 30 mm and higher homogeneity of 75 mm .
 - There are two materials such as BK7 for the visible to near-infrared region and synthetic fused silica for ultraviolet light.
 - Distance of opposite sides are available in two types of 5 mm and 10 mm .

