


### Beamsplitters INDEX



#### A beamsplitter is an optic that splits light into 2 directions. The split ratio of light transmittance and reflectance is 1:1 and is called a half mirror.

The 2 forms of beamsplitters are cube and plate type.



### Experimentation with laser (Linear polarized light)

Lasers are used to evaluate our half mirrors and with the polarization properties of the laser, we are able to check the change of light splitting ratios.

| Туре                                         | Affected products | Application                                                                                                                     | Experimention with laser<br>(Linear polarized light)                                                   | Polarization dependency |
|----------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|
| Non-polarizing<br>(NPCH)<br>Reference B046   | 663               | For high accuracy laser experiment with accurate light ratios at any polarization levels.                                       | The light ratios at 1:1 stay stable even<br>when the polarization situation changes.<br>No power loss. | Small                   |
| Hybrid<br>(HBCH)<br>Reference B048           | <b>Jece</b>       | For multi-wavelength light splitting solutions.                                                                                 | Light ratio at 1:1 from any specified light incident direction will remain similar.                    |                         |
| Laser Line Plate<br>(PSMH)<br>Reference B055 |                   | Large beam size, multi mirror optical set up with small<br>power light source and supports high power laser light<br>splitting. | Polarization at 45 degree (AOI) or circle polarization light with no power loss detected.              |                         |
| Chromium Plate<br>(PSCH)<br>Reference B058   |                   | Large beam size and observation optical system.                                                                                 | Polarization at 45 degree (AOI) or circle<br>polarization light with 36% absorption<br>of light power. |                         |
| Chromium Cube<br>(CSCH)<br>Reference B049    | Ū,                | For basic laser experiments and compact optical solutions. Great entry level price.                                             | Polarization at 45 degree (AOI) or circle polarization light with 40% absorption of light power.       |                         |
| Dielectric Cube<br>(CSMH)<br>Reference B050  |                   | For general white light and non-polarizing light i.e. LED light splitting solutions.                                            | Polarization at 45 degree (AOI) or circle polarization light with no power loss detected.              | Large                   |


Beamsplitters Lenses **Multi-Element Optics** Filters Prisms Substrates/Windows **Optical Data** 

Application

Systems

Maintenance

Half Mirror Cube Half Mirror Plate **Application Note Beamsplitters Harmonic Separator Beam Samplers** Others



light and normal light source.



Application Systems

**Optics & Optical** Coatings

Holders

Bases

Manual Stages

**Actuators** 

Motoeized Stages

Light Sources

Index

Guide

Mirrors

Beamsplitters

Polarizers

Lenses

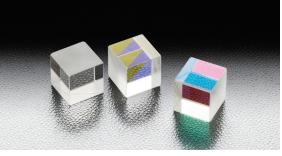
**Multi-Element Optics** 

Filters

Prisms

Substrates/Windows

**Ontical Data** 


Maintenance

Selection Guide

Half Mirror Cube Half Mirror Plate **Application Note Beamsplitters** 

**Harmonic Separator** 

**Beam Samplers** Others



• The laser line corresponds to various wavelengths.

Non-polarizing Cube Half Mirrors

• The reflection to transmission ratio is 1:1 regardless of the polarization condition from the input beam. • Depending on polarization, the reflection to transmission ratio of these products does not vary.

• Because the effective bandwidth of a non-polarizing coat is narrow, these products are designed for a single wavelength.

• Narrowband multi-layer AR coatings are applied to the four surfaces of the cube.

**Specifications** Material BK7, Synthetic fused silica Surface flatness of substrate  $\lambda/4$ **Beam Deviation** <5 Hypotenuse Surface: Dielectric multi-layer nonpolarizing coating Coating Four Surfaces: Multi-layer anti-reflection coating Incident angle 0 Divergence ratio 1:1(reflectance : transmittance) 0.3J/cm<sup>2</sup> Laser Damage Threshold (Laser pulse width 10ns, repetition frequency 20Hz) Surface Quality (Scratch-Dig) 20-10 85% of Circle to actual dimension Clear aperture (80% of actual aperture for 5 and 7mm dimension (A=B=C) products.)

#### Guide

Please contact our International Sales Division for customized products. (Customized on size, wavelength or R:T, etc.) Reference B069

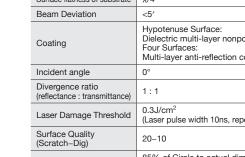
To produce non-polarizing beam splitter (plate type) is also possible.

For a guarantee in reflected wavefront error or transmitted wavefront error, please contact our International Sales Division.

#### Attention

Input beam from the prism side is indicated by a O.

Phase retardation of light input will not be preserved. Use a waveplate for phase compensation.


Wavelength dispersion on transmitted and reflected light derives from refraction index and glass thickness. And also, when diverging or introducing a focusing beam, chromatic aberration or spherical aberration may occur.

| Part Number  | Jumber Wavelength Range [nm] |    | Material               | Transmittance<br>[%] |  |
|--------------|------------------------------|----|------------------------|----------------------|--|
| NPCH-10-2660 | 266                          | 10 | Synthetic fused silica | 50±10                |  |
| NPCH-15-2660 | 266                          | 15 | Synthetic fused silica | 50±10                |  |
| NPCH-20-2660 | 266                          | 20 | Synthetic fused silica | 50±10                |  |
| NPCH-10-3550 | 355                          | 10 | Synthetic fused silica | 50±7                 |  |
| NPCH-15-3550 | 355                          | 15 | Synthetic fused silica | 50±7                 |  |
| NPCH-20-3550 | 355                          | 20 | Synthetic fused silica | 50±7                 |  |
| NPCH-10-4050 | 405                          | 10 | BK7                    | 50±7                 |  |
| NPCH-15-4050 | 405                          | 15 | BK7                    | 50±7                 |  |
| NPCH-20-4050 | 405                          | 20 | BK7                    | 50±7                 |  |
| NPCH-10-4880 | 488                          | 10 | BK7                    | 50±5                 |  |
| NPCH-15-4880 | 488                          | 15 | BK7                    | 50±5                 |  |
| NPCH-20-4880 | 488                          | 20 | BK7                    | 50±5                 |  |
| NPCH-10-5145 | 514.5                        | 10 | BK7                    | 50±5                 |  |
| NPCH-15-5145 | 514.5                        | 15 | BK7                    | 50±5                 |  |
| NPCH-20-5145 | 514.5                        | 20 | BK7                    | 50±5                 |  |
| NPCH-10-5320 | 532                          | 10 | BK7                    | 50±5                 |  |
| NPCH-15-5320 | 532                          | 15 | BK7                    | 50±5                 |  |
| NPCH-20-5320 | 532                          | 20 | BK7                    | 50±5                 |  |

Compatible Optic Mounts

PLH-25, -40 / KKD-25PHRO, -40PHRO

B046

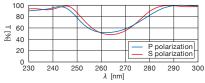


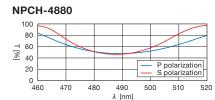
Schematic Hypotenuse surface: Dielectric multi-layer nonpolarizing coating The hypotenuse of prism marked with () is c Reflected light

### **Outline Drawing** Tolerance A ±0.2 B ±0.2 C ±0.1

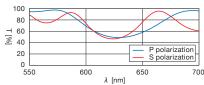
Four surface with multi-layer anti-reflection coating.

Transmitted light

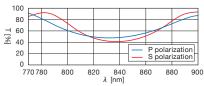

**NPCH** 


**RoHS** 

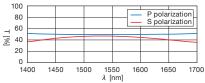



| Cube Type: Nonpolar | rizing 632.8 – 1550nm    |               |          |                      |
|---------------------|--------------------------|---------------|----------|----------------------|
| Part Number         | Wavelength Range<br>[nm] | A=B=C<br>[mm] | Material | Transmittance<br>[%] |
| NPCH-05-6328        | 632.8                    | 5             | BK7      | 50±5                 |
| NPCH-10-6328        | 632.8                    | 10            | BK7      | 50±5                 |
| NPCH-15-6328        | 632.8                    | 15            | BK7      | 50±5                 |
| NPCH-20-6328        | 632.8                    | 20            | BK7      | 50±5                 |
| NPCH-10-6700        | 670                      | 10            | BK7      | 50±5                 |
| NPCH-15-6700        | 670                      | 15            | BK7      | 50±5                 |
| NPCH-20-6700        | 670                      | 20            | BK7      | 50±5                 |
| NPCH-10-7800        | 780                      | 10            | BK7      | 50±5                 |
| NPCH-15-7800        | 780                      | 15            | BK7      | 50±5                 |
| NPCH-20-7800        | 780                      | 20            | BK7      | 50±5                 |
| NPCH-10-8300        | 830                      | 10            | BK7      | 50±5                 |
| NPCH-15-8300        | 830                      | 15            | BK7      | 50±5                 |
| NPCH-20-8300        | 830                      | 20            | BK7      | 50±5                 |
| NPCH-10-10640       | 1064                     | 10            | BK7      | 50±5                 |
| NPCH-15-10640       | 1064                     | 15            | BK7      | 50±5                 |
| NPCH-20-10640       | 1064                     | 20            | BK7      | 50±5                 |
| NPCH-10-13000       | 1300                     | 10            | BK7      | 50±5                 |
| NPCH-15-13000       | 1300                     | 15            | BK7      | 50±5                 |
| NPCH-20-13000       | 1300                     | 20            | BK7      | 50±5                 |
| NPCH-10-15500       | 1550                     | 10            | BK7      | 50±5                 |
| NPCH-15-15500       | 1550                     | 15            | BK7      | 50±5                 |
| NPCH-20-15500       | 1550                     | 20            | BK7      | 50±5                 |

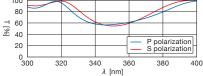
NPCH-2660 100





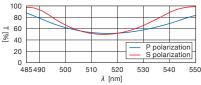


#### NPCH-6328



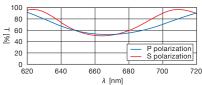

### NPCH-8300



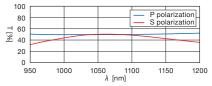
NPCH-15500




NPCH-3550 100 80 60




Typical Transmittance Data






### NPCH-6700



#### NPCH-10640





500

NPCH-4050

100

80

60

20

0 └─ 370

NPCH-5320

100

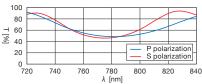
80

60

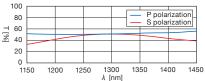
40

20

0


450

[%]


380 390 400 410 420

λ [nm]

T [%] 40



#### NPCH-13000



Optical Coatings **Holders** 

**Optics &** 

Application Systems

Manual Stages

Bases

Actuators

Motoeized Stages

Light Sources

Index

T: Transmission

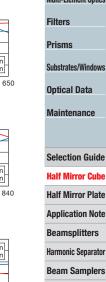
P polarization S polarization

P polarization S polarization

600

430 440 450

Guide Mirrors **Beamsplitters** Polarizers Lenses Multi-Element Optics Substrates/Windows Maintenance


550

λ [nm]



Beamsplitters Harmonic Separator **Beam Samplers** 

Others



WEB http://www.sigma-koki.com/english/ E-mail international@sigma-koki.com TEL +81-3-5638-8228 FAX +81-3-5638-6550



(T) (ratio is 1:1)

Hybrid Cube Half Mirrors

Application Systems

**Optics & Optical** Coatings

Holders

Bases

Manual Stages

**Actuators** 

Motoeized Stages

Light Sources

Guide

Mirrors

**Beamsplitters** 

Polarizers

Lenses

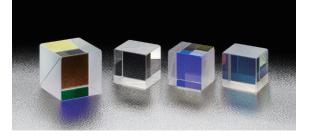
Multi-Element Optics

Filters

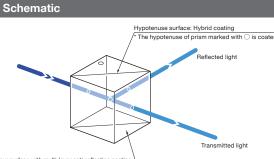
Prisms

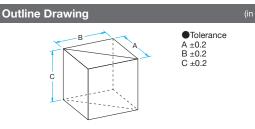
Substrates/Windows

**Ontical Data** 


Maintenance

Selection Guide


Half Mirror Cube Half Mirror Plate **Application Note Beamsplitters** 


**Harmonic Separator** 

**Beam Samplers** Others



transmission and reflection of lights, the aperture remains unchanged.





#### **Specifications** Material BK7 Surface flatness of substrate λ/4 Beam Deviation <5 Hypotenuse surface: Hybrid coating (dielectric multi-layer coating and metallic coating) Coating Four surfaces: Multi-layer anti-reflection coating Incident angle 0° Divergence ratio 1:1 (reflectance : transmittance) 0.3J/cm<sup>2</sup> Laser Damage Threshold (Laser pulse width 10ns, repetition frequency 20Hz) Surface Quality 40-20 (Scratch-Dig) Clear aperture 85% of actual dimension

RoHS

Catalog W3013

#### Guide

**HBCH** 

• This hybrid coating is consisting of dielectric multi-layer and metallic coatings. The result is low polarizing and broadband. • As it is cube shaped, there will not be any lateral shift of the optical axis when a normal incident beam is applied. During

• Even when the orientation of linear polarization has been changed, beams are equally divided as reflected (R) : transmitted

Low polarizing cube half mirrors that can be used for broadband visible and infrared light. Applicable for polarizing systems and lasers with multiple wavelength or visible light.

- Please contact our International Sales Division for customized products. (Customized on size, wavelength or R:T, etc.) Reference B069
- For a guarantee in reflected wavefront error or transmitted wavefront error, please contact our International Sales Division.

#### Attention

▶ Input beam from the prism side is indicated by a ○.

- Reflection and refraction over wavelength will differ when light input is applied from the opposite side of the prism.
- Approximately 10% to 15% of absorption occurs in hybrid coating due to the properties in metallic coating. Hence, any additional transmitted or reflected light will not achieve 100%.
- Phase retardation of light input will not be preserved. Use a waveplate for phase compensation.
- Wavelength dispersion on transmitted and reflected light derives from refraction index and glass thickness. And also, when diverging or introducing a focusing beam, chromatic aberration or spherical aberration may occur.

#### Specifications

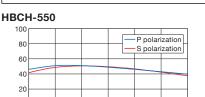
100

80

60

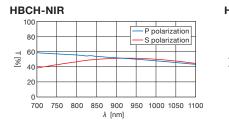
40

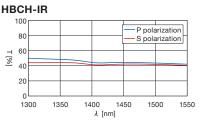
20


n

400 450 500 550

| Part Number | Wavelength<br>Range<br>[nm] | A=B=C<br>[mm] | Transmittance<br>[%] | Polarization dependency<br>  Tp-Ts  <br>[%] |
|-------------|-----------------------------|---------------|----------------------|---------------------------------------------|
| HBCH-10-550 | 400 – 700                   | 10            | 45±10 (550nm)        | <10                                         |
| HBCH-15-550 | 400 – 700                   | 15            | 45±10 (550nm)        | <10                                         |
| HBCH-20-550 | 400 – 700                   | 20            | 45±10 (550nm)        | <10                                         |
| HBCH-10-NIR | 700 – 1100                  | 10            | 47±10 (900nm)        | <20 (<10: 800 – 1100nm)                     |
| HBCH-15-NIR | 700 – 1100                  | 15            | 47±10 (900nm)        | <20 (<10: 800 – 1100nm)                     |
| HBCH-20-NIR | 700 – 1100                  | 20            | 47±10 (900nm)        | <20 (<10: 800 – 1100nm)                     |
| HBCH-10-IR  | 1300 – 1550                 | 10            | 45±10 (1400nm)       | <10                                         |
| HBCH-15-IR  | 1300 – 1550                 | 15            | 45±10 (1400nm)       | <10                                         |
| HBCH-20-IR  | 1300 – 1550                 | 20            | 45±10 (1400nm)       | <10                                         |


#### **Typical Transmittance Data**


T: Transmission



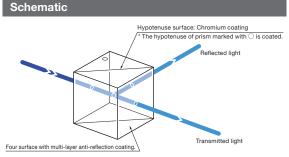
λ [nm]

600 650 700

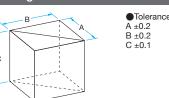




**Compatible Optic Mounts** PLH-25, -40 / KKD-25PHRO, -40PHRO


Index




## Chromium cube half mirrors consist of two right angle prisms. One of them is coated with chromium (Cr) on the hypotenuse face. Half mirror divides input beam to reflectance and transmittance in 1:1. A beamsplitter of R:T=1:1 is called "Half Mirror".

- Four surfaces of the cube are coated with multi-layer anti-reflection coatings
- Approximately one third of the input beam is lost because of absorption of chromium. However these beamsplitters do not depend on wavelength, polarization and incident angle of the input beam, and provide a highly neutral reflectivity.
- For cube beamsplitters, unlike plate beamsplitters, beam deviations at transmission and ghosts rarely occur.





**Outline Drawing** 



| Specifications |                          |               |
|----------------|--------------------------|---------------|
| Part Number    | Wavelength Range<br>[nm] | A=B=C<br>[mm] |
| CSCH-10-550    | 400 – 700                | 10            |
| CSCH-15-550    | 400 – 700                | 15            |
| CSCH-20-550    | 400 – 700                | 20            |
| CSCH-25-550    | 400 – 700                | 25            |
| CSCH-30-550    | 400 – 700                | 30            |
| CSCH-40-550    | 400 – 700                | 40            |
| CSCH-50-550    | 400 – 700                | 50            |
| CSCH-10-800    | 750 – 850                | 10            |
| CSCH-15-800    | 750 – 850                | 15            |

750 - 850

| Specifications                                    |                                                                                    |
|---------------------------------------------------|------------------------------------------------------------------------------------|
| Material                                          | BK7                                                                                |
| Surface flatness of substrate                     | λ/4                                                                                |
| Beam Deviation                                    | <5′                                                                                |
| Coating                                           | Hypotenuse surface: Chromium<br>Four surfaces: Multi-layer anti-reflection coating |
| Incident angle                                    | 0°                                                                                 |
| Transmittance                                     | Average 28±5%<br>(The average value of the P-Polarization and the S-Polarization)  |
| Divergence ratio<br>(reflectance : transmittance) | 1:1                                                                                |
| Laser Damage Threshold                            | 0.3J/cm <sup>2</sup><br>(Laser pulse width 10ns, repetition frequency 20Hz)        |
| Surface Quality<br>(Scratch–Dig)                  | 40–20                                                                              |
| Clear aperture                                    | 85% of actual aperture                                                             |

#### Guide

Please contact our International Sales Division for customized products.

- (Customized on size, wavelength or R:T, etc.) Reference> B069 For a guarantee in reflected wavefront error or transmitted wavefront
- error, please contact our International Sales Division.

#### Attention

- Input beam from the prism side is indicated by a  $\bigcirc$ .
- Phase retardation of light input will not be preserved. Use a waveplate for phase compensation.
- Wavelength dispersion on transmitted and reflected light derives from refraction index and glass thickness. And also, when diverging or introducing a focusing beam, chromatic aberration or spherical aberration may occur.
- The transmittance curves are based on actual measurements and may be different with manufacturing lots.
- The surface flatness is the reflected wavefront distortion of the surface before coating.
- Be sure to wear laser safety goggles when checking optical path and adjusting optical axis.

### Optical Data Maintenance

Substrates/Windows

Application Systems

**Optics &** 

Coatings

**Optical** 

Holders

Bases

Manual Stages

Actuators

Motoeized

Stages

Light

Index

Guide

Mirrors

Polarizers

Lenses

Filters

Prisms

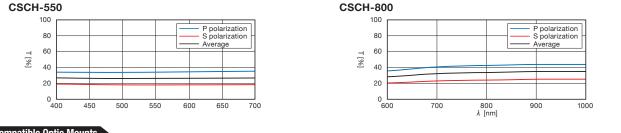
Beamsplitters

**Multi-Element Optics** 

Sources

### Selection Guide

Half Mirror Cube Half Mirror Plate Application Note Beamsplitters Harmonic Separator


**Beam Samplers** 

Others

T: Transmission



20



Compatible Optic Mounts

CSCH-20-800

PLH-25, -40 / KKD-25PHRO, -40PHRO

## WEB http://www.sigma-koki.com/english/ E-mail international@sigma-koki.com TEL +81-3-5638-8228 FAX +81-3-5638-6550



"Half Mirror".



Application Systems

**Optics & Optical** Coatings

Holders

Bases

Manual Stages

**Actuators** 

Motoeized Stages

Light Sources

Index

Guide

Mirrors

**Beamsplitters** 

Polarizers

Lenses

**Multi-Element Optics** 

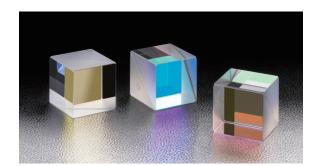
Filters

Prisms

Substrates/Windows

**Ontical Data** 

Maintenance

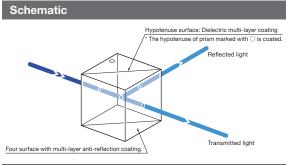

Selection Guide Half Mirror Cube

Half Mirror Plate **Application Note Beamsplitters** 

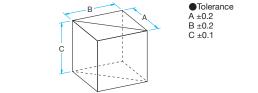
**Harmonic Separator** 

**Beam Samplers** 

Others




Dielectric Cube Half Mirrors


Dielectric cube half mirrors consist of two right angle prisms.

• Four surfaces of the cube are coated with multi-layer anti-reflection coatings.

beam. These higher refraction harf mirrors show strong dependency.



## **Outline Drawing**



#### **Specifications** Material BK7 Surface flatness of substrate λ/4 Beam Deviation <5 Hypotenuse surface: Dielectric multi-layer coating Coating Four surfaces: Multi-layer anti-reflection coating 0 Incident angle Divergence ratio 1:1 (reflectance : transmittance) Non-polarized beam 45 degrees direction of lineraly polarization or cirlular polarization Polarization of the incident beam 0.3J/cm Laser Damage Threshold (Laser pulse width 10ns, repetition frequency 20Hz) Surface Quality 20 - 10(Scratch-Dig) 85% of circle to actual dimension Clear aperture (80% of actual aperture for 5 and 7mm dimension (A=B=C) products.)

#### Guide

(Customized on size, wavelength or R:T, etc.) Reference B069

For a guarantee in reflected wavefront error or transmitted wavefront error, please contact our International Sales Division.

#### Attention

- Reflection and refraction over wavelength will differ when light input is applied from the opposite side of the prism.
- The transmittance curves are based on actual measurements and may be different with manufacturing lots.
- The surface flatness is the reflected wavefront distortion of the surface before coating.
- Be sure to wear laser safety goggles when checking optical path and adjusting optical axis

### Specifications

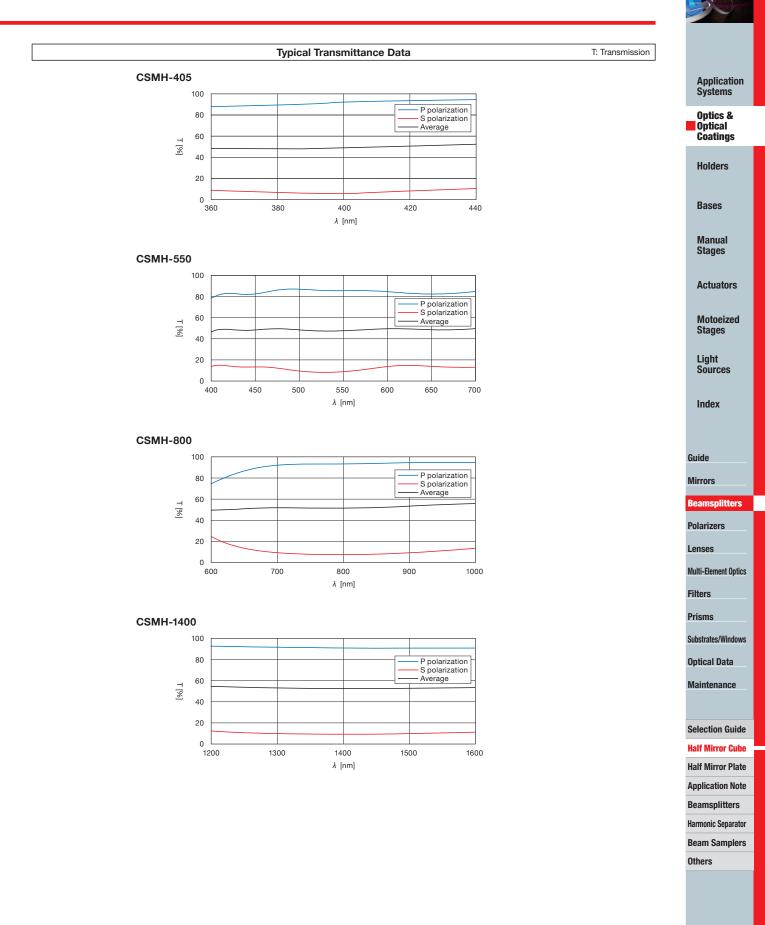
| Part Number    | Wavelength Range<br>[nm] | A=B=C<br>[mm] | Transmittance<br>(The average value of the P-Polarization and the S-Polarization<br>[%] |
|----------------|--------------------------|---------------|-----------------------------------------------------------------------------------------|
| CSMH-10-405    | 390 – 410                | 10            | Average 50±3                                                                            |
| CSMH-12.7-405  | 390 – 410                | 12.7          | Average 50±3                                                                            |
| CSMH-15-405    | 390 – 410                | 15            | Average 50±3                                                                            |
| CSMH-20-405    | 390 – 410                | 20            | Average 50±3                                                                            |
| CSMH-25-405    | 390 – 410                | 25            | Average 50±3                                                                            |
| CSMH-30-405    | 390 – 410                | 30            | Average 50±3                                                                            |
| CSMH-05-550    | 400 – 700                | 5             | Average 50±5                                                                            |
| CSMH-07-550    | 400 – 700                | 7             | Average 50±5                                                                            |
| CSMH-10-550    | 400 – 700                | 10            | Average 50±5                                                                            |
| CSMH-12.7-550  | 400 – 700                | 12.7          | Average 50±5                                                                            |
| CSMH-15-550    | 400 – 700                | 15            | Average 50±5                                                                            |
| CSMH-20-550    | 400 – 700                | 20            | Average 50±5                                                                            |
| CSMH-25-550    | 400 – 700                | 25            | Average 50±5                                                                            |
| CSMH-30-550    | 400 – 700                | 30            | Average 50±5                                                                            |
| CSMH-40-550    | 400 – 700                | 40            | Average 50±5                                                                            |
| CSMH-50-550    | 400 – 700                | 50            | Average 50±5                                                                            |
| CSMH-10-800    | 750 – 850                | 10            | Average 50±5                                                                            |
| CSMH-12.7-800  | 750 – 850                | 12.7          | Average 50±5                                                                            |
| CSMH-15-800    | 750 – 850                | 15            | Average 50±5                                                                            |
| CSMH-20-800    | 750 – 850                | 20            | Average 50±5                                                                            |
| CSMH-25-800    | 750 – 850                | 25            | Average 50±5                                                                            |
| CSMH-30-800    | 750 – 850                | 30            | Average 50±5                                                                            |
| CSMH-10-1400   | 1300 – 1550              | 10            | Average 50±5                                                                            |
| CSMH-12.7-1400 | 1300 – 1550              | 12.7          | Average 50±5                                                                            |
| CSMH-20-1400   | 1300 – 1550              | 20            | Average 50±5                                                                            |

**CSMH** 

One of them is coated with dielectric multi-layer partial reflection coating on the hypotenuse face.

• Half mirror divides input beam to reflectance and transmittance at a 1:1 ratio. A beamsplitter with R:T (1:1 ratio) is called

• The loss of input beam is minimized as there is no absorption from dielectric coating. However the reflection to transmis-


sion ratio of these dielectric cube half mirrors vary depending on wavelength, polarization and the incident angle of input

Please contact our International Sales Division for customized products.

▶ Input beam from the prism side is indicated by a ○.

RoHS

### Code W3015



Compatible Optic Mounts

PLH-25, -40 / KKD-25PHRO, -40PHRO, -60PHRO / SHA-60RO



**Optics & Optical Coatings** 

Holders

Bases

Manual Stages

**Actuators** 

Motoeized Stages

Light Sources

Index

Guide

Mirrors

**Beamsplitters** 

Polarizers

Lenses

**Multi-Element Optics** 

Filters

Prisms

Substrates/Windows

**Ontical Data** 

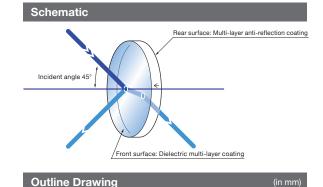
Maintenance

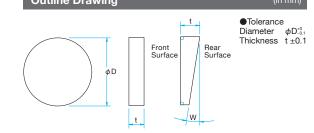
Selection Guide Half Mirror Cube

Half Mirror Plate

**Application Note Beamsplitters Harmonic Separator Beam Samplers** 

Others





Ultra Broadband Dieletric Half Mirrors

Used for both transmission and divergence of multi-wavelength laser and white light source. Ultra broadband half-mirrors are used for spectrometry applications.

- PMH series have 4 types of ultra-broadband optics with a recovery range from UV to IR.
- PSMH series have 3 types of ultra-broadband optics with a recovery range from Visible to NIR, which are used for optical communication applications.
- Dielectric multi-layer coated optics are an excellent choice for beam deviation applications because of low absorption capabilities.
- Its low polarization characteristic can also be applied in beam deviation with a linear polarization laser or a laser light.
- Sigma Koki produces plate form optics that are light weight and maintain low dispersion with less aberration.
- Both wedge and plate type mirrors are made to have "low ghosting and low interference effect.







| Specifications                                    |                                                                                                    |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Material                                          | BK7, Synthetic fused silica                                                                        |
| Surface Flatness                                  | λ/10                                                                                               |
| Coating                                           | Front surface: Dielectric multi-layer coating<br>Rear surface: Multi-layer anti-reflection coating |
| Incident angle                                    | 45°                                                                                                |
| Divergence ratio<br>(reflectance : transmittance) | 1:1                                                                                                |
| Surface Quality<br>(Scratch–Dig)                  | 10–5                                                                                               |
| Clear aperture                                    | 90% of actual aperture                                                                             |

**PMH/PSMH** 

#### Guide

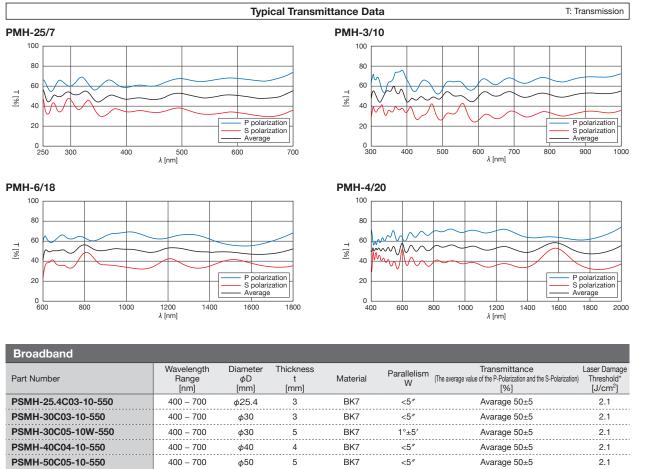
- For customization, we can offer different sizes, wavelengths and deviation ratios. Re ce) B069
  - Please contact our International Sales Division.
- For guaranteed higher reflectance accuracy and higher transmittance optics, please contact us.
- An arrow mark will be printed on the thick side of the wedge plate to indicate the surface of the mirror.

#### Attention

- When applying a laser linear polarized light, the direction of polarization may affect the ratio of reflectance and transmittance. For a rigorous divergence usage of 1:1 ratio, ensure the direction of polarization is set to 45 degrees or use a circular polarizer.
- When a laser light transmits through the optics, the light path may shift by a few millimetres horizontally due to the refraction and the thickness of the wedge plate.
- The transmittance wavelength properties may be different if the incident angle is other than 45 degrees.
- Please check the arrow mark on the side of the wedge plate that indicates the coated surface.
- The phase difference of incident light cannot be preserved on transmittance and reflectance light. Please use a wave plate to compensate.

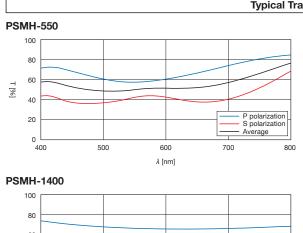
| Part Number         | Wavelength<br>Range<br>[nm] | Diameter | Thickness<br>t<br>[mm] | Material               | Parallelism<br>W | Transmittance<br>(The average value of the P-Polarization and the S-Polarization)<br>[%] | Laser Damag<br>Threshold*<br>[J/cm <sup>2</sup> ] |
|---------------------|-----------------------------|----------|------------------------|------------------------|------------------|------------------------------------------------------------------------------------------|---------------------------------------------------|
| PMH-25.4C03-10-25/7 | 250 – 700                   | φ25.4    | 3                      | Synthetic fused silica | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-30C03-10-25/7   | 250 – 700                   | φ30      | 3                      | Synthetic fused silica | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-50C05-10-25/7   | 250 – 700                   | φ50      | 5                      | Synthetic fused silica | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-25.4C03-10-3/10 | 300 – 1000                  | φ25.4    | 3                      | Synthetic fused silica | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-30C03-10-3/10   | 300 – 1000                  | φ30      | 3                      | Synthetic fused silica | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-50C05-10-3/10   | 300 – 1000                  | φ50      | 5                      | Synthetic fused silica | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-25.4C03-10-6/18 | 600 – 1800                  | φ25.4    | 3                      | BK7                    | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-30C03-10-6/18   | 600 – 1800                  | φ30      | 3                      | BK7                    | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-50C05-10-6/18   | 600 – 1800                  | φ50      | 5                      | BK7                    | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-25.4C03-10-4/20 | 400 – 2000                  | φ25.4    | 3                      | BK7                    | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-30C03-10-4/20   | 400 – 2000                  | φ30      | 3                      | BK7                    | <5″              | Average 50±10                                                                            | 0.5                                               |
| PMH-50C05-10-4/20   | 400 – 2000                  | φ50      | 5                      | BK7                    | <5″              | Average 50±10                                                                            | 0.5                                               |

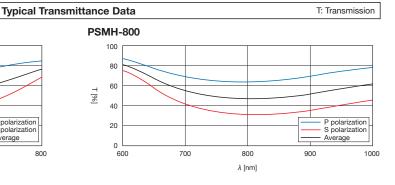
Laser pulse width 10ns, repetition frequency 20Hz


#### Compatible Optic Mounts

BHAN-30S, -50S / MHG-HS25-NL, MP30-NL, MP50-NL

| ations                  |                                                                                                    |
|-------------------------|----------------------------------------------------------------------------------------------------|
|                         | BK7, Synthetic fused silica                                                                        |
| iness                   | λ/10                                                                                               |
|                         | Front surface: Dielectric multi-layer coating<br>Rear surface: Multi-layer anti-reflection coating |
| gle                     | 45°                                                                                                |
| ratio<br>transmittance) | 1:1                                                                                                |
| ality                   | 10 5                                                                                               |


**RoHS** 


### Code W3016



| PSMH-25.4C03-10-550 | 400 - 700   | φ25.4       | 3 | BK7 | <5″   | Avarage 50±5  | 2.1 |
|---------------------|-------------|-------------|---|-----|-------|---------------|-----|
| PSMH-30C03-10-550   | 400 – 700   | φ30         | 3 | BK7 | <5″   | Avarage 50±5  | 2.1 |
| PSMH-30C05-10W-550  | 400 – 700   | φ30         | 5 | BK7 | 1°±5′ | Avarage 50±5  | 2.1 |
| PSMH-40C04-10-550   | 400 – 700   | <i>φ</i> 40 | 4 | BK7 | <5″   | Avarage 50±5  | 2.1 |
| PSMH-50C05-10-550   | 400 - 700   | φ50         | 5 | BK7 | <5″   | Avarage 50±5  | 2.1 |
| PSMH-50C08-10W-550  | 400 - 700   | φ50         | 8 | BK7 | 1°±5′ | Avarage 50±5  | 2.1 |
| PSMH-30C03-10-800   | 700 – 900   | φ30         | 3 | BK7 | <5″   | 50±3 (800nm)  | 2.1 |
| PSMH-30C05-10W-800  | 700 – 900   | φ30         | 5 | BK7 | 1°±5′ | 50±3 (800nm)  | 2.1 |
| PSMH-50C05-10-800   | 700 – 900   | φ50         | 5 | BK7 | <5″   | 50±3 (800nm)  | 2.1 |
| PSMH-50C08-10W-800  | 700 – 900   | φ50         | 8 | BK7 | 1°±5′ | 50±3 (800nm)  | 2.1 |
| PSMH-30C03-10-1400  | 1300 – 1550 | φ30         | 3 | BK7 | <5″   | 50±3 (1400nm) | 2.1 |
| PSMH-30C05-10W-1400 | 1300 – 1550 | φ30         | 5 | BK7 | 1°±5′ | 50±3 (1400nm) | 2.1 |

\* Laser pulse width 10ns, repetition frequency 20Hz





| Index                |
|----------------------|
| Guide                |
| Mirrors              |
| Beamsplitters        |
| Polarizers           |
| Lenses               |
| Multi-Element Optics |
| Filters              |
| Prisms               |
| Substrates/Windows   |
| Optical Data         |
| Maintenance          |
|                      |
| Selection Guide      |
| Half Mirror Cube     |
| Half Mirror Plate    |
| Application Note     |
| Beamsplitters        |
| Harmonic Separator   |

Application Systems

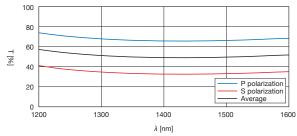
Optics & Optical

Coatings

**Holders** 

Bases

Manual


Stages

Actuators

Motoeized

Stages

Light Sources



**Beam Samplers** 

Others



Application Systems

**Optics &** 

**Optical** 

Holders

Coatings

Thin Plate Beamsplitter **MPSMH** 

ation)

#### Extremely thin beamsplitter.

It can be inserted into an optical light path without any beam shift or chromatic dispersion for any light transmittance application.

- 2 choices of thickness, 300um and 90um.
- Dielectric multi-layer optical coating with reflectance and transmittance ratios at 1:1
- Dielectric multi-layer optical coating on the surface and AR coating on the rear to provide a mirror with no loss of power. • The plate if firmly held by a glass retainer to avoid thermal expansion.
- Because of our fabrication method, it offers good durability and high resistance against vibration and with our traditional and proven optical polishing process on silica quartz which is different from a pellicle.

Bases

Manual Stages

**Actuators** 

Motoeized Stages

Light Sources

Index

Guide

Mirrors

**Beamsplitters** 

Polarizers

Lenses

**Multi-Element Optics** 

Filters

Prisms

Substrates/Windows

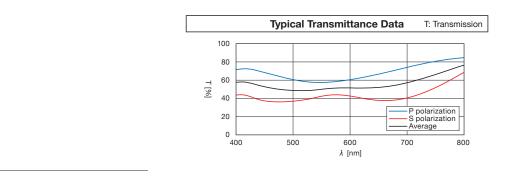
**Ontical Data** 

Maintenance

Selection Guide Half Mirror Cube

#### Half Mirror Plate

**Application Note Beamsplitters Harmonic Separator Beam Samplers** Others


| Specifications                                    |                                                                                                                               |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Material                                          | Synthetic fused silica                                                                                                        |
| Coating                                           | Front surface: Dielectric multi-layer coating<br>Rear surface (45 degrees taper hole):<br>Multi-layer anti-reflection coating |
| Incident angle                                    | 45°                                                                                                                           |
| Transmittance                                     | Average 50±5%<br>(The average value of the P-Polarization and the S-Polariza                                                  |
| Divergence ratio<br>(reflectance : transmittance) | 1:1                                                                                                                           |
| Surface Quality<br>(Scratch-Dig)                  | 40–20                                                                                                                         |
| Clear aperture                                    | φ10mm                                                                                                                         |
| Material propreties                               | Protective window: Synthetic fused silica<br>Outer frame: Aluminum<br>Finishing: Matt black almite                            |

▶ For customization, we can offer different sizes, wavelengths and deviation ratios. Reference B069

Please contact our International Sales Division.

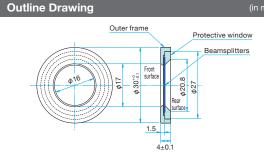
- Thin beamsplitters are extremely thin and fragile. Special care must be taken during cleaning and handling.
- When removing dust from the surface, do not use optics tissue paper to clean. Use a compress gas spray instead.
- When applying a laser linear polarized light, the direction of polarization may affect the ratio of reflectance and transmittance. For a rigorous divergence usage of 1:1 ratio, ensure the direction of polarization is set to 45 degrees or use a circular polarizer.
- The transmittance wavelength properties may be different if the incident angle is other than 45 degrees.
- Avoid pushing the glass retainer as the mirror can bend or break. When handling, please use the other metal frame.
- The surface reflectance accuracy may deteriorate when used outside recommended operating temperature.
- The phase difference of incident light cannot be preserved on transmittance and reflectance light. Please use a wave plate to compensate.

| Specifications      |                          |                          |                                                    |
|---------------------|--------------------------|--------------------------|----------------------------------------------------|
| Part Number         | Wavelength Range<br>[nm] | Optics Thickness<br>[mm] | Surface Accuracy after coating                     |
| MPSMH-30C0.3-1-550  | 400 – 700                | 0.3±0.03                 | Reflectance: $\lambda$ Transmittance: $\lambda$    |
| MPSMH-30C0.09-1-550 | 400 – 700                | 0.09±0.01                | Reflectance: Polishing<br>Transmittance: Polishing |



#### Compatible Optic Mounts

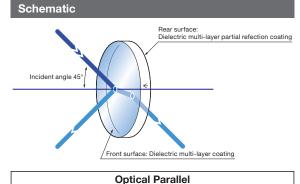
MHG-HS30-NL / BHAN-30S

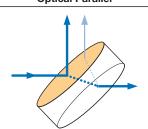




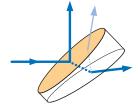

Guide Rear surface: Multi-layer anti-reflection coating Attention Front surface: Dielectric multi-layer coating

Schematic


Incident angle 45




#### Laser line plate mirrors are part of plate beamsplitters that are optically coated with dielectric multi-layer on the front surface of optical parallels or wedged substrates. The rear surface is coated with multi-layer anti-reflection.


- Half mirror divides input beam to reflectance and transmittance in 1:1. A beamsplitter of R:T=1:1 is called "Half Mirror".
- Any loss from the input beams on this product is minimized because dielectric coating has no absorption properties. However, the input ratio of reflection to transmission depends on wavelength, polarization and incident of angle of input beam.
- Plate beamsplitters have beam deviations on transmission and ghost on rear surface reflections. Wedged substrates are used to prevent ghost.







Wedged Substrate



| Specifications                                    |                                                                                                                         |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Material                                          | BK7, Synthetic fused silica, CaF2                                                                                       |  |  |  |  |
| Surface Flatness                                  | $\lambda$ /10 (PSMH-157 is Polished)                                                                                    |  |  |  |  |
| Coating                                           | Front surface:<br>Dielectric multi-layer partial refection coating<br>Rear surface: Multi-layer anti-reflection coating |  |  |  |  |
| Incident angle                                    | 45°                                                                                                                     |  |  |  |  |
| Divergence ratio<br>(reflectance : transmittance) | 1:1                                                                                                                     |  |  |  |  |
| Surface Quality<br>(Scratch–Dig)                  | 10–5 (PSMH-157: 40–20)                                                                                                  |  |  |  |  |
| Clear aperture                                    | 90% of actual aperture                                                                                                  |  |  |  |  |

Catalog W3018

Application Systems

**Optics &** 

Coatings

**Optical** 

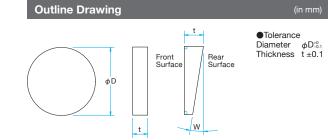
Holders

Bases

Manual Stages

Actuators

Motoeized Stages


Light Sources

RoHS

- Please contact our International Sales Division for customized products. (Customized on size, wavelength or R:T, etc.) Reference B069
- For a guarantee in reflected wavefront error or transmitted wavefront
- On most thickness surfaces, there is a thickness direction arrow

#### Attention

- Should these products do not function as a half mirror, please check laser is linear in polarization.
- compared to a one made of optical parallel.
- thickness of the substrate and the wavelength or the incident angle of the input beam.
- Surface flatness is the reflected wavefront distortion of the surface prior to coating.



Compatible Optic Mounts

BHAN-30S, -50S / MHG-MP30-NL, MP50-NL

#### Guide

- We also have ultra-wideband, broadband and cube types.
- error, please contact our International Sales Division.
- marked for wedged types.

- the polarization characteristics of the light source. Do note that LD
- The beam deviation at transmission of a wedged beamsplitter is large
- The amount of beam deviation of a beamsplitter depends on the
- Transmission curves are based on actual measurements and may be different with manufacturing lots.

Index Guide Mirrors Beamsplitters Polarizers Lenses **Multi-Element Optics** Filters Prisms Substrates/Windows **Optical Data** Maintenance Selection Guide Half Mirror Cube Half Mirror Plate **Application Note Beamsplitters Harmonic Separator Beam Samplers** Others



## Laser Line Plate Half Mirrors

## **PSMH**



|                        | Laser Line                             | Laser Line                  |                        |                        |                        |                  |                                                                                                                |                                                    |
|------------------------|----------------------------------------|-----------------------------|------------------------|------------------------|------------------------|------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Application<br>Systems | Part Number                            | Wavelength<br>Range<br>[nm] | Diameter<br>φD<br>[mm] | Thickness<br>t<br>[mm] | Material               | Parallelism<br>W | Reflectance:R<br>Transmittance:T<br>(The average value of the<br>P-Polarization and the S-Polarization)<br>[%] | Laser Damage<br>Threshold*<br>[J/cm <sup>2</sup> ] |
| Optics &<br>Optical    | PSMH-30C03-P-157                       | 157                         | φ30                    | 3                      | CaF <sub>2</sub>       | <3′              | R=40±10                                                                                                        | 0.5                                                |
| Coatings               | PSMH-50C05-P-157                       | 157                         | φ50                    | 5                      | CaF <sub>2</sub>       | <3′              | R=40±10                                                                                                        | 0.5                                                |
|                        | PSMH-30C03-10-193                      | 193                         | φ30                    | 3                      | Synthetic fused silica | <5″              | T=45±5                                                                                                         | 1                                                  |
| Holders                | PSMH-30C05-10W-193                     | 193                         | φ30                    | 5                      | Synthetic fused silica | 1°±5′            | T=45±5                                                                                                         | 1                                                  |
|                        | PSMH-50C05-10-193                      | 193                         | φ50                    | 5                      | Synthetic fused silica | <5″              | T=45±5                                                                                                         | 1                                                  |
| Bases                  | PSMH-50C08-10W-193                     | 193                         | φ50                    | 8                      | Synthetic fused silica | 1°±5′            | T=45±5                                                                                                         | 1                                                  |
| Dases                  | PSMH-30C03-10-248/266                  | 248 – 266                   | φ30                    | 3                      | Synthetic fused silica | <5″              | T=50±3                                                                                                         | 2                                                  |
|                        | PSMH-30C05-10W-248/266                 | 248 – 266                   | φ30                    | 5                      | Synthetic fused silica | 1°±5′            | T=50±3                                                                                                         | 2                                                  |
| Manual<br>Stages       | PSMH-50C05-10-248/266                  | 248 – 266                   | φ50                    | 5                      | Synthetic fused silica | <5″              | T=50±3                                                                                                         | 2                                                  |
| Slayes                 | PSMH-50C08-10W-248/266                 | 248 – 266                   | φ50                    | 8                      | Synthetic fused silica | 1°±5′            | T=50±3                                                                                                         | 2                                                  |
|                        | PSMH-30C03-10-308/355                  | 308 – 355                   | φ30                    | 3                      | Synthetic fused silica | <5″              | T= Average 50±5                                                                                                | 2                                                  |
| Actuators              | PSMH-30C05-10W-308/355                 | 308 – 355                   | φ30                    | 5                      | Synthetic fused silica | 1°±5′            | T= Average 50±5                                                                                                | 2                                                  |
|                        | PSMH-50C05-10-308/355                  | 308 – 355                   | φ50                    | 5                      | Synthetic fused silica | <5″              | T= Average 50±5                                                                                                | 2                                                  |
| Motoeized              | PSMH-50C08-10W-308/355                 | 308 – 355                   | φ50                    | 8                      | Synthetic fused silica | 1°±5′            | T= Average 50±5                                                                                                | 2                                                  |
| Stages                 | PSMH-30C03-10-405                      | 390 – 410                   | φ30                    | 3                      | BK7                    | <5″              | T=50±3                                                                                                         | 2.1                                                |
|                        | PSMH-30C05-10W-405                     | 390 – 410                   | φ30                    | 5                      | BK7                    | 1°±5′            | T=50±3                                                                                                         | 2.1                                                |
| Light<br>Sources       | PSMH-50C05-10-405                      | 390 – 410                   | φ50                    | 5                      | BK7                    | <5″              | T=50±3                                                                                                         | 2.1                                                |
| oourooo                | PSMH-50C08-10W-405                     | 390 – 410                   | φ50                    | 8                      | BK7                    | 1°±5′            | T=50±3                                                                                                         | 2.1                                                |
|                        | PSMH-30C03-10-1064                     | 1064                        | φ30                    | 3                      | BK7                    | <5″              | T=50±3                                                                                                         | 20                                                 |
| Index                  | PSMH-30C05-10W-1064                    | 1064                        | φ30                    | 5                      | BK7                    | 1°±5′            | T=50±3                                                                                                         | 20                                                 |
|                        | PSMH-50C05-10-1064                     | 1064                        | φ50                    | 5                      | BK7                    | <5″              | T=50±3                                                                                                         | 20                                                 |
|                        | PSMH-50C08-10W-1064                    | 1064                        | φ50                    | 8                      | BK7                    | 1°±5′            | T=50±3                                                                                                         | 20                                                 |
| Guide                  | *Laser pulse width 10ns (PSMH-157: 20) | ns), repetition free        | quency 20Hz            |                        |                        |                  |                                                                                                                |                                                    |

Mirrors

**Beamsplitters** Polarizers

Lenses

Multi-Element Optics

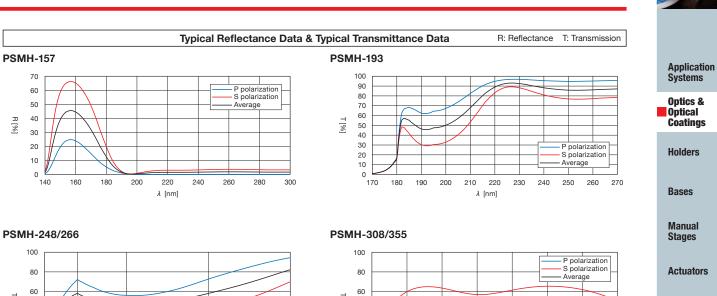
Filters

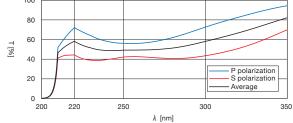
Prisms

Substrates/Windows

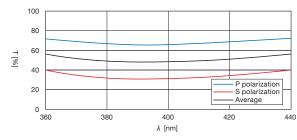
**Optical Data** 

Maintenance


Selection Guide Half Mirror Cube


### **Half Mirror Plate**

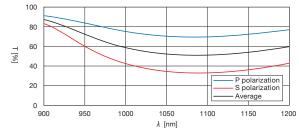
**Application Note** 


Beamsplitters Harmonic Separator **Beam Samplers** 

Others














PSMH-1064



340

360

380

| Ligh<br>Sou<br>Inde |             |
|---------------------|-------------|
| Guide               | ;X          |
| Mirrors             | s           |
| Beams               | plitters    |
| Polariz             | ers         |
| Lenses              | ;           |
| Multi-Ele           | ment Optics |
| Filters             |             |
| Prisms              |             |
| Substrate           | es/Windows  |
| Optical             | Data        |
| Mainte              | nance       |
| Selecti             | on Guide    |
| Half Mi             | rror Cube   |
| Half Mi             | rror Plate  |
| Applica             | tion Note   |
| Beams               | plitters    |
| Harmonio            | c Separator |
| Beam S              | Samplers    |

Motoeized Stages

400

Others

used to prevent ghost.

Schematic

Incident angle 45

**Outline Drawing** 

S

Par

PS

φD



## Chromium Plate Half Mirrors

**PSCH** 



#### Chromium plate half mirrors are part of plate beamsplitters that are coated with chromium (Cr) on the front surface of optical parallels or wedged substrates. The rear surface is coated with multi-layer anti-reflection.

• Half mirror divides input beam to reflectance and transmittance in 1:1. A beamsplitter of R:T=1:1 is called "Half Mirror".

• Approximately one third of the input beam is lost because of absorption of chromium. However these beamsplitters do

not depend on wavelength, polarization and incident angle of the input beam, and provide a highly neutral reflectivity.

• Plate beamsplitters have beam deviations on transmission and ghost on rear surface reflections. Wedged substrates are

Application Systems **Optics &** 

**Optical** Coatings

Holders

Bases

Manual Stages

**Actuators** 

Motoeized Stages

Light Sources

Index

Guide

Mirrors

**Beamsplitters** 

Polarizers

Lenses

**Multi-Element Optics** 

Filters

Prisms

Substrates/Windows

**Ontical Data** 

Maintenance



#### Half Mirror Plate

**Application Note Beamsplitters Harmonic Separator Beam Samplers** 

Others



Rear surface: Multi-layer anti-reflection coating

Tolerance

Thickness

Thickness t ±0.2

Tolerance

 $\phi D_{-0.1}^{+0}$ 

t + 0.1

 $\phi D_{-0.2}^{+0}$ 

*≦*φ50 Diameter

φ60≦ Diameter

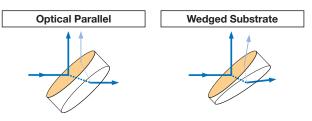
Rear Surface

Front surface: Chromium coating

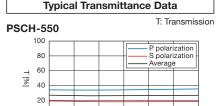
Front

Surf

| Specifications                                    |                                                                                   |
|---------------------------------------------------|-----------------------------------------------------------------------------------|
| Material                                          | BK7                                                                               |
| Surface Flatness                                  | λ/10                                                                              |
| Coating                                           | Front surface: Chromium<br>Rear surface: Multi-layer anti-reflection coating      |
| Incident angle                                    | 45°                                                                               |
| Transmittance                                     | Average 30±5%<br>(The average value of the P-Polarization and the S-Polarization) |
| Divergence ratio<br>(reflectance : transmittance) | 1:1                                                                               |
| Laser Damage Threshold                            | 0.25J/cm <sup>2</sup><br>(Laser pulse width 10ns, repetition frequency 20Hz)      |
| Surface Quality<br>(Scratch–Dig)                  | 40–20                                                                             |
| Clear aperture                                    | 90% of actual aperture                                                            |


#### Guide

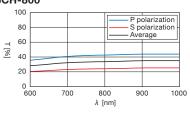
Please contact our International Sales Division for customized products. (Customized on size, wavelength or R:T, etc.) Reference B069


For a guarantee in reflected wavefront error or transmitted wavefront error, please contact our International Sales Division.

#### Attention

- The beam deviation at transmission of a wedged beamsplitter is large compared to a one made of optical parallel.
- The amount of beam deviation of a beamsplitter depends on the thickness of the substrate and the wavelength or the incident angle of the input beam.
- Transmission curves are based on actual measurements and may be different with manufacturing lots.
- Surface flatness is the reflected wavefront distortion of the surface prior to coating.
- Be sure to wear laser safety goggles when checking optical path and adjusting optical axis




| pecifications      |                             |                        |                        |                  |
|--------------------|-----------------------------|------------------------|------------------------|------------------|
| rt Number          | Wavelength<br>Range<br>[nm] | Diameter<br>φD<br>[mm] | Thickness<br>t<br>[mm] | Parallelism<br>W |
| SCH-25.4C03-10-550 | 400 - 700                   | φ25.4                  | 3                      | <5″              |
| SCH-30C03-10-550   | 400 – 700                   | <i>ф</i> 30            | 3                      | <5″              |
| SCH-30C05-10W-550  | 400 – 700                   | φ30                    | 5                      | 1°±5′            |
| SCH-40C04-10-550   | 400 – 700                   | <i>φ</i> 40            | 4                      | <5″              |
| SCH-50C05-10-550   | 400 – 700                   | <i>φ</i> 50            | 5                      | <5″              |
| SCH-50C08-10W-550  | 400 – 700                   | φ50                    | 8                      | 1°±5′            |
| SCH-60C06-10-550   | 400 – 700                   | <i>φ</i> 60            | 6                      | <5″              |
| SCH-100C10-10-550  | 400 – 700                   | <i>φ</i> 100           | 10                     | <5″              |
| SCH-100C15-10W-550 | 400 – 700                   | <i>φ</i> 100           | 15                     | 1°±5′            |
| SCH-25.4C03-10-800 | 750 – 850                   | φ25.4                  | 3                      | <5″              |
| SCH-30C03-10-800   | 750 – 850                   | <i>ф</i> 30            | 3                      | <5″              |
| SCH-30C05-10W-800  | 750 – 850                   | φ30                    | 5                      | 1°±5′            |
| SCH-50C05-10-800   | 750 – 850                   | φ50                    | 5                      | <5″              |
| SCH-50C08-10W-800  | 750 – 850                   | φ50                    | 8                      | 1°±5′            |





0 L 400

450 500 550 600 650 700



λ [nm]

#### Compatible Optic Mounts

BHAN-30S, -50S / MHAN-25.4S, -40S, -60S / MHG-MP25-NL, MP30-NL, MP50-NL

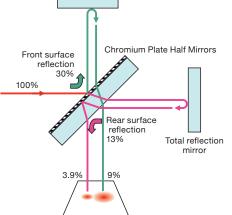
### About light behaviour on a beamsplitter

A half mirror is designed with reflectance and transmission of light with a 1:1 ratio. If light incident direction and polarization conditions change, it may impact the ratio.

#### Reflectance and transmittance properties of the incident light direction

#### Chrome coating and multi-wavelength coating application.

Reflection properties change when light is projected onto the coated and black surfaces.


Any configuration similar to Michelson interferometer may require both sides to have incident light. In this case, light ratios may be unbalanced.

Choose the following set up if the light incident direction can be selected. Incident light onto the coated surface of plate type beamsplitter. Incident light onto the  $\bigcirc$  mark surface for cube type beamsplitter. If the Incident light is on the wrong surface, the specifications mentioned in the catalogue cannot be realized.

Comparison reflectance and transmittance properties of the incident light direction in the chromium plate half mirror.

Beflection 30%

Transmission 30%



Total reflection mirror

The difference in reflectance due to the incident direction occurs when there is absorption in the coating. It does not occur in the dielectric multilayer coating.

Transmission 30%

 $\leq$ 

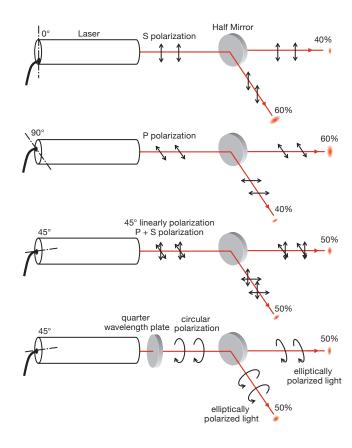
| Large<br>value | ge Difference in reflectance due to the incident direction |                            |                                 |                                                  |  |  |  |
|----------------|------------------------------------------------------------|----------------------------|---------------------------------|--------------------------------------------------|--|--|--|
|                | Chromium Plate<br><b>PSCH</b>                              | Hybrid Cube<br><b>HBCH</b> | Laser Line Plate<br><b>PSMH</b> | Chromium Cube · Dielectric Cube<br>CSCH CSMH etc |  |  |  |

Absorption 57%

Incidence 100%

#### The reflectance and the transmittance of a polarized light incident

#### In case fo using Laser


Incidence 100%

Absorption 40%

Light emitted from the laser is linearly polarized light. Because of this, even though it is used in the experiments and the optical system which are not related to the polarization, it is necessary to take into account the polarization characteristics of the beam splitter.

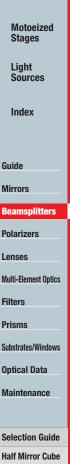
The transmittance and the reflectance may change in accordance with the type of beamsplitter and its polarization direction.

To split the light into a balanced light ratio, a nonpolarized beam splitter (NPCH) is recommanded. The polarization properties of the laser has no influence to it.



Application Systems

Optics & Optical Coatings


Holders

Bases

Manual

Stages

Actuators



Half Mirror Plate

**Application Note** 

Beamsplitters Harmonic Separator Beam Samplers Others





Application Systems

**Optics & Optical Coatings** 

Holders

Bases

Manual Stages

**Actuators** 

Motoeized Stages

Schematic

Four surface with multi-layer anti-reflection coating.

**Outline Drawing** 

Light Sources

Index

Guide

Mirrors

**Beamsplitters** 

Polarizers

Lenses

**Multi-Element Optics** 

Filters

Prisms

Substrates/Windows

**Ontical Data** 

Maintenance

Selection Guide Half Mirror Cube Half Mirror Plate **Application Note** 

### **Beamsplitters**

**Harmonic Separator Beam Samplers** 

Others





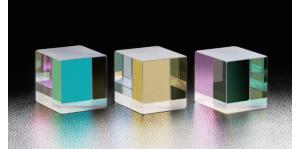
### Cube beamsplitters with dielectric multi-layer coated to the oblique faces of a 45° right angle prism. Divides beams at reflected light (R) : transmission light (T) ratio of 1:2 or 1:3.

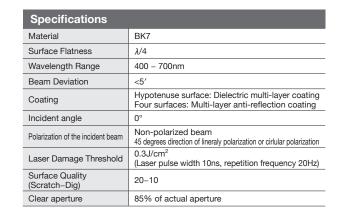
• Anti-reflection coating (AR coat) is applied to the incident and outgoing planes.

Hypotenuse surface: Dielectric multi-layer coating \* The hypotenuse of prism marked with () is coated.

Reflected light

Transmitted light


Tolerance


A ±0.2

B ±0.2

C ±0.1

- The dielectric multi-layer coating has virtually zero light absorption and very low light intensity loss. However, transmittance and reflectance may change according to wavelength, polarization and incident angles. A higher reflectance will occur from a higher dependence.
- In contrast to plate type half mirrors, cube mirrors have no ghosting or transmission optical path deviation.





#### Guide

- Please contact our International Sales Division for customized products. (Customized on size, wavelength or R:T, etc.) Reference B069
- For a guarantee in reflected wavefront error or transmitted wavefront error, please contact our International Sales Division.

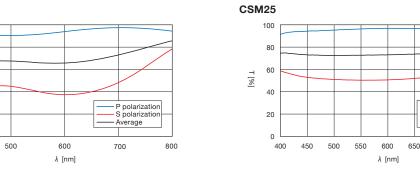
#### Attention

- Introduce light (from or to) the prism on the side indicated by  $\bigcirc$  (half coated side).
- The transmission curve on the graph is based on actual measurements and may vary from different production lots.
- Phase retardation of inputting light will not be preserved.
- Use waveplate for phase compensation.
- Use only non-polarized light or circular polarized light as incident light for dielectric multi-layer coated beam splitters. Using polarized light may result in division ratios that vary according to polarization components.

T. Transmission

800

P polarization


S polarizatio

erage

700 750

| Specifications |                             |               |                                                                                                   |                                                                                                     |  |  |  |
|----------------|-----------------------------|---------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Part Number    | Reflectance : Transmittance | A=B=C<br>[mm] | Transmittance at 550nm<br>(The average value of the P-Polarization and the S-Polarization)<br>[%] | Transmittance at 400-700nm<br>(The average value of the P-Polarization and the S-Polarizatio<br>[%] |  |  |  |
| CSM33-10-550   | 1:2                         | 10            | 67±5                                                                                              | <80                                                                                                 |  |  |  |
| CSM33-20-550   | 1:2                         | 20            | 67±5                                                                                              | <80                                                                                                 |  |  |  |
| CSM25-10-550   | 1:3                         | 10            | 75±5                                                                                              | <90                                                                                                 |  |  |  |
| CSM25-20-550   | 1:3                         | 20            | 75±5                                                                                              | <90                                                                                                 |  |  |  |

## Typical Transmittance Data



#### Compatible Optic Mounts

CSM33

[%] 40

100

80

60

20

0

400

PLH-25, -40 / KKD-25PHRO, -40PHRO

## RoHS Catalog W3021

Application Systems

**Optics &** 

Coatings

**Optical** 

Holders

Bases

Manual Stages

Actuators

Motoeized Stages

Light

Index

Guide

Mirrors

Beamsplitters

**Multi-Element Optics** 

Substrates/Windows
Optical Data
Maintenance

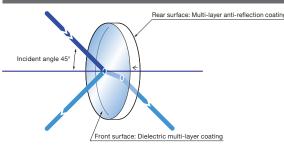
Selection Guide Half Mirror Cube Half Mirror Plate Application Note

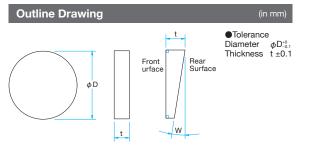
Polarizers

Lenses

Filters

Prisms


Sources


## Plate-type beam splitters with a dielectric multi-layer coat on a parallel plate and a wedge substrate. Divides beams at a reflected light (R) : transmission light (T) ratio of 1:2 or 1:3 The rear surface is coated with anti-reflection (AR).

• The dielectric multi-layer coating has virtually zero light absorption and very low light intensity loss. However, transmittance and reflectance may change according to wavelength, polarization and incident angles. A higher reflectance will occur from a higher dependence. Some deviation of the transmission optical path or ghosting may occur. To prevent ghosting, use wedge substrate type of beam splitters.

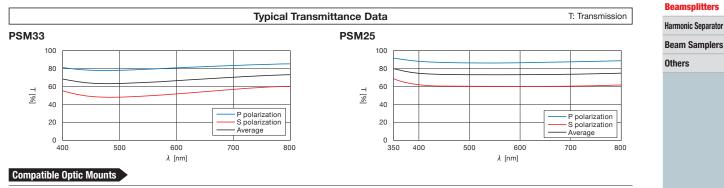








| Specifications                   |                                                                                                    |
|----------------------------------|----------------------------------------------------------------------------------------------------|
| Material                         | BK7                                                                                                |
| Surface Flatness                 | λ/10                                                                                               |
| Coating                          | Front surface: Dielectric multi-layer coating<br>Rear surface: Multi-layer anti-reflection coating |
| Wavelength Range                 | 400 – 700nm                                                                                        |
| Incident angle                   | 45°                                                                                                |
| Laser Damage Threshold           | 2.1J/cm <sup>2</sup><br>(Laser pulse width 10ns, repetition frequency 20Hz)                        |
| Surface Quality<br>(Scratch–Dig) | 10–5                                                                                               |
| Clear aperture                   | 90% of actual aperture                                                                             |


#### Guide

- Please contact our International Sales Division for customized products. (Customized on size, wavelength or R:T, etc.) Reference> B069
- (Customized on size, wavelength or R:T, etc.) Reterence B069 ► For a guarantee in reflected wavefront error or transmitted wavefront error, please contact our International Sales Division.
- Wedge type substrates have a thickness direction arrow that is marked on most surfaces.

#### Attention

- The transmission curve on the graph is based on actual measurements and may vary from different production lots.
- Surface flatness is the reflected wavefront distortion of the surface prior to coating.
- Compared to precision parallel plate type splitters, wedged substrate type beam splitters can prevent ghosting caused by rear surface reflection and significantly increase the displacement of the optical path.
- Dielectric multi-layer coated beam splitters sometimes do not function effectively in specified division ratios. During such case, first check the polarization characteristics of the light source (laser). Do keep in mind that lasers used for the semiconductor field emit a linear polarized light.

| opecifications       |                             |                        |                        |                  |                                                                                                   |                                                                                                       |
|----------------------|-----------------------------|------------------------|------------------------|------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Part Number          | Reflectance : Transmittance | Diameter<br>φD<br>[mm] | Thickness<br>t<br>[mm] | Parallelism<br>W | Transmittance at 550nm<br>(The average value of the P-Polarization and the S-Polarization)<br>[%] | Transmittance at 400-700nm<br>(The average value of the P-Polarization and the S-Polarization)<br>[%] |
| PSM33-25.4C03-10-550 | 1:2                         | φ25.4                  | 3                      | <5″              | 67±3                                                                                              | <80                                                                                                   |
| PSM33-30C03-10-550   | 1:2                         | φ30                    | 3                      | <5″              | 67±3                                                                                              | <80                                                                                                   |
| PSM33-30C05-10W-550  | 1:2                         | φ30                    | 5                      | 1°±5′            | 67±3                                                                                              | <80                                                                                                   |
| PSM25-25.4C05-10-550 | 1:3                         | φ25.4                  | 3                      | <5″              | 75±3                                                                                              | <90                                                                                                   |
| PSM25-30C03-10-550   | 1:3                         | φ30                    | 3                      | <5″              | 75±3                                                                                              | <90                                                                                                   |
| PSM25-30C05-10W-550  | 1:3                         | φ30                    | 5                      | 1°±5′            | 75±3                                                                                              | <90                                                                                                   |



BHAN-30S / MHAN-25.4DS / MHG-MP25-NL, MP30-NL

#### ptics & Optical Coatings



### VBS WSQNA/WBNA



With a variable beam splitter, the incident angle of a laser can be changed. The (R:T) ratios can also be modified. This is commonly used for when adjusting the light quantity for the laser without a variable adjustment of the light quantity or the laser to be stabilized, when weakening the light quantity temporarily by adjusting the optical system, and when splitting to any two light quantity.

• Since it is used a dielectric multilayer coating, it is excellent in durability and light resistance.

The beam shift caused by the tilt of the beam splitter can be removed by using with a correcting plate. (See how to use)
It can be used for arbitrary polarization. However, the transmittance characteristic depends on the polarization state.



Motoeized Stages

Application Systems

**Optics &** 

**Optical** 

Coatings

Holders

Light Sources

Index

Guide

Mirrors

Solarization direction S polarization direction Incident angle θ (variable)

**50**<sup>±</sup>%

3±0.1



**Beamsplitters** 

Polarizers

Lenses

Filters

Prisms

Substrates/Windows

Ontical Data

Maintenance

Selection Guide Half Mirror Cube Half Mirror Plate Application Note

#### Beamsplitters

Harmonic Separator Beam Samplers Others

| Specifications                   |                                                                                                                                                                             |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material                         | BK7, Synthetic fused silica                                                                                                                                                 |
| Surface Flatness                 | λ                                                                                                                                                                           |
| Parallelism                      | <5″                                                                                                                                                                         |
| Coating                          | VBS Front surface: Dielectric multi-layer Coating<br>Rear surface: Multi-layer anti-reflection coating<br>WBMA, WSQMA<br>Both surfaces: Multi-layer anti-reflection coating |
| Surface Quality<br>(Scratch–Dig) | 10–5                                                                                                                                                                        |
| Clear aperture                   | Circle that internally connected to 90% of the side length                                                                                                                  |
| Effective beam incident diameter | Ellipsoidal 30×43mm (Angle of inclinaison)                                                                                                                                  |

#### Guide

- Different size, wavelength and deviation ratio are not mentioned in this catalog but available as custom product upon on request. Reference B069
- We offer the most comprehensive range of beam splitter holder and stages to choose from. Let us know the angle of your choice.
- This variable attenuator (model SHPS) can be used as a system and is available from this catalogue page.

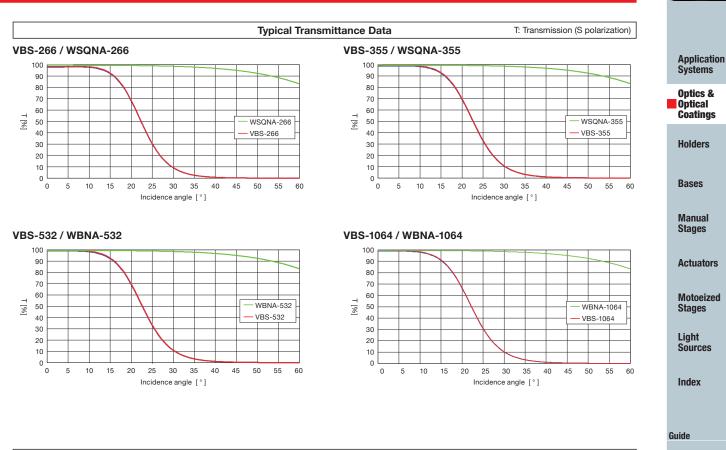


#### Attention

- When using with high power laser, make sure to execute at the end edge of the reflected light.
- The reflectance properties of the optics may change in a high temperature environment.
- When adjusting the transmittance, the incident angle may change and cause the light path to shift. To correct this, please use the light path corrector (model WSQNA/WBNA)
- For a large beam size at dia 30mm or more and used it at a high inclinaison level, the beam can be cut at the reflected area.
- ▶ For "P" polarization use, make sure that the incident angle is at 45 degrees or more.

| Part Number      | Wavelength<br>Range<br>[nm] | Transmittance of S polarization $(\theta=0^{\circ})$ [%] | Transmittance of S polarization $(\theta=45^{\circ})$ [%] | Material               | Laser Damage Threshold<br>[J/cm <sup>2</sup> ] |
|------------------|-----------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------------|------------------------------------------------|
| VBS-50S03-1-266  | 266                         | >90                                                      | <5                                                        | Synthetic fused silica | 1                                              |
| VBS-50S03-1-355  | 355                         | >93                                                      | <5                                                        | Synthetic fused silica | 1                                              |
| VBS-50S03-1-532  | 532                         | >95                                                      | <5                                                        | BK7                    | 2.5                                            |
| VBS-50S03-1-1064 | 1064                        | >95                                                      | <5                                                        | BK7                    | 3.5                                            |

\* Laser pulse width 10ns, repetition frequency 20Hz

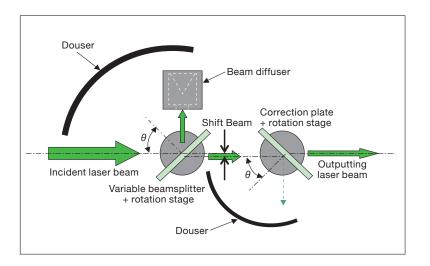

50<sup>+0</sup>

**Outline Drawing** 

| Light path corrector    |                             |                                                                           |                        |                                                 |
|-------------------------|-----------------------------|---------------------------------------------------------------------------|------------------------|-------------------------------------------------|
| Part Number             | Wavelength<br>Range<br>[nm] | Transmittance of S polarization<br>$(\theta=0^{\circ}-45^{\circ})$<br>[%] | Material               | Laser Damage Threshold*<br>[J/cm <sup>2</sup> ] |
| WSQNA-50S03-1-266-0/45D | 266                         | Average 97                                                                | Synthetic fused silica | 1                                               |
| WSQNA-50S03-1-355-0/45D | 355                         | Average 97                                                                | Synthetic fused silica | 1                                               |
| WBNA-50S03-1-532-0/45D  | 532                         | Average 98                                                                | BK7                    | 2.5                                             |
| WBNA-50S03-1-1064-0/45D | 1064                        | Average 98                                                                | BK7                    | 3.5                                             |

\* Laser pulse width 10ns, repetition frequency 20Hz

## Catalog W3022 Catalog W3023




#### Sample of use

The variable beam splitter can be used individually. When modifying the incident angle, optics thickness and its refractive properties, a shift may occur in the light path. To reduce this shift, we highly recommend a light path corrector. Please see image below.

- Place the variable beamsplitter onto a rotation stage to allow an angle adjustment.
- Install the light path corrector onto a rotating stage.
- Position the light path corrector at a similar angle with the variable beamsplitter on an opposite side.
  If the reflected light of the variable beamsplitter is not used, make sure to place a light cut-off material or a beam diffuser at the edge-end of the light.
- The power of the reflected light from the light path corrector must be cut off at the edge-end of the light.

For part structure, please contact our International Sales Division.



#### Compatible Optic Mounts

CHA-60, -60F

Mirrors

Polarizers

Lenses

Filters

Prisms

**Beamsplitters** 

**Multi-Element Optics** 

Substrates/Windows

Selection Guide

Half Mirror Cube Half Mirror Plate

**Application Note** 

Beamsplitters Harmonic Separator

**Beam Samplers** 

Others

Optical Data Maintenance



## Harmonic Separators



## Harmonic separators are part of dichroic mirrors used to separate specific YAG harmonic from other harmonics.

**YHS** 

### We have prepared three different wavelength reflectance.

Optics & Optical Coatings

Application

Systems

These mirrors are coated with multi-layered dielectric with different refractive index by turns using BK7 optical parallels with λ/10 surface flatness and parallelism is 5 arc second. The other surface is coated with multi-layer anti-reflection.
These mirrors are used at 45° incident angle to reflect specific wavelength beam and transmits other wavelength.

• For plate type, you can use a large laser beam diameter.

## Holders

Bases

Manual Stages

Actuators

Motoeized Stages

Light Sources

Index

Guide

Mirrors

Beamsplitters

Polarizers

Lenses

Multi-Element Optics

Filters

Prisms

Substrates/Windows

Optical Data

Maintenance

Selection Guide Half Mirror Cube Half Mirror Plate Application Note Beamsplitters Harmonic Separator Beam Samplers

Others



| Schematic               |                                                                                                    |
|-------------------------|----------------------------------------------------------------------------------------------------|
|                         | ear surface: Multi-layer anti-reflection coating<br>Transmitted light<br>:tric multi-layer coating |
| / Front surface: Dielec | stric multi-layer coating                                                                          |

**Outline Drawing** 

#### **Specifications** BK7 Material Surface Flatness λ/10 Front surface: Dielectric multi-layer coating Coating Rear surface: Multi-layer anti-reflection coating 45 Angle of Incidence <5″ Parallelism Surface Quality (Scratch-Dig) 10-5 Clear aperture 90% of actual aperture

#### Guide

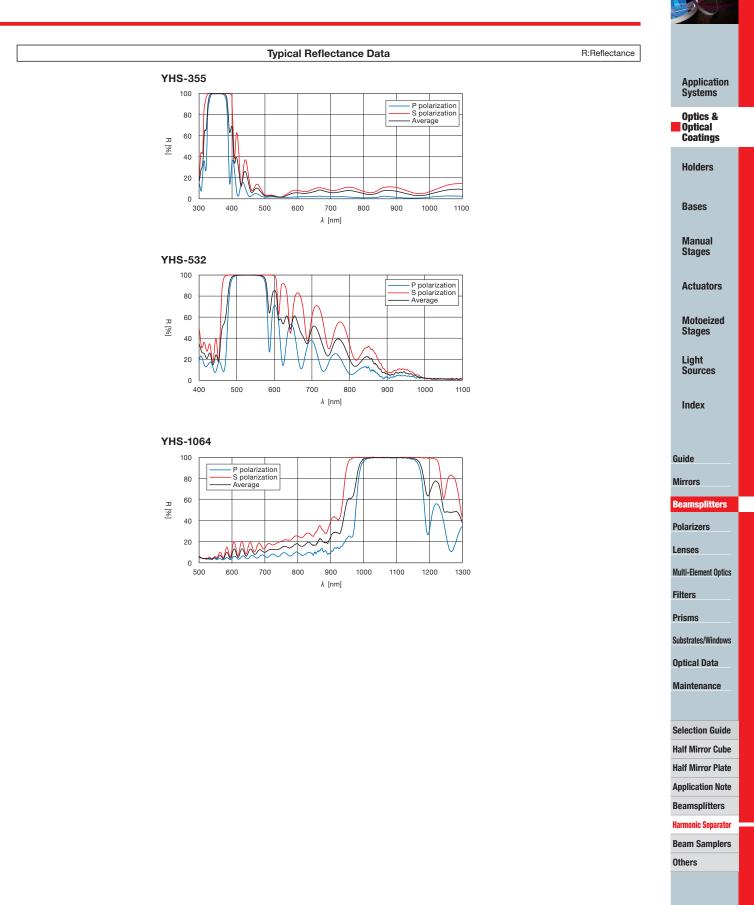
Please contact our International Sales Division for customized products. (Customized on size, wavelength or R:T, etc.) Reference> B069

► For a guarantee in reflected wavefront error or transmitted wavefront error, please contact our International Sales Division.

#### Attention

- The reflection surface is indicated with an arrow on the side of substrate.
- The reflectance curves are based on actual measurements and may vary from different manufacturing lots.
- Be sure to wear laser safety goggles when checking optical path and adjusting optical axis.
- The reflectance in the specifications list is at random polarization or (p-polarization reflectance + s-polarization reflectance) / 2.

| Part Number                  | Diameter φD<br>[mm] | Thickness t<br>[mm] | Reflectance at 355nm<br>(The average value of the P-Polarization and the S-Polarization)<br>[%] | Transmittance at 532•1064nm<br>(The average value of the P-Polarization and the S-Polarization) L<br>[%] | aser Damage Threshol<br>[J/cm <sup>2</sup> ] |
|------------------------------|---------------------|---------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------|
| YHS-25.4C05-355              | φ25.4               | 5                   | >99.5                                                                                           | >85                                                                                                      | 5                                            |
| YHS-30C05-355                | φ30                 | 5                   | >99.5                                                                                           | >85                                                                                                      | 5                                            |
| YHS-50C08-355                | φ50                 | 8                   | >99.5                                                                                           | >85                                                                                                      | 5                                            |
| aser pulse width 10ns, repet |                     |                     | smitted wavelength : 1064nn                                                                     |                                                                                                          |                                              |


| Part Number                    | [mm]            | [mm] | (The average value of the P-Polarization and the S-Polarization) $\cite{[\%]}$ | (The average value of the P-Polarization and the S-Polarization) $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | aser Damage Threshold<br>[J/cm <sup>2</sup> ] |
|--------------------------------|-----------------|------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| YHS-25.4C05-532                | φ25.4           | 5    | >99.5                                                                          | >95                                                                                                      | 8                                             |
| YHS-30C05-532                  | φ30             | 5    | >99.5                                                                          | >95                                                                                                      | 8                                             |
| YHS-50C08-532                  | φ50             | 8    | >99.5                                                                          | >95                                                                                                      | 8                                             |
| l aser pulse width 10ns repeti | ition frequency | 20Hz |                                                                                |                                                                                                          |                                               |

\*Laser pulse width 10ns, repetition frequency 20Hz

|                  | Diameter <i>p</i> D |      | Reflectance at 1064nm<br>(The average value of the P-Polarization and the S-Polarization) | Transmittance at 532nm<br>(The average value of the P-Polarization and the S-Polarization) | Laser Damage Threshold |
|------------------|---------------------|------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------|
|                  | [mm]                | [mm] | [%]                                                                                       | [%]                                                                                        | [J/cm <sup>2</sup> ]   |
| YHS-25.4C05-1064 | φ25.4               | 5    | >99.5                                                                                     | >90                                                                                        | 20                     |
| YHS-30C05-1064   | φ30                 | 5    | >99.5                                                                                     | >90                                                                                        | 20                     |
| YHS-50C08-1064   | φ50                 | 8    | >99.5                                                                                     | >90                                                                                        | 20                     |

Laser pulse width 10ns, repetition frequency 20Hz

### Code W3024



Compatible Optic Mounts

MHG-HS25-NL, HS30-NL / MHG-PM50-NL / BHAN-30S, -50S



Application Systems

**Optics & Optical** Coatings

Bases

Manual Stages

**Actuators** 

Motoeized Stages

Light Sources

Index

Guide

Mirrors

**Beamsplitters** 

Polarizers

Lenses

**Multi-Element Optics** 

Filters

Prisms

Substrates/Windows

**Ontical Data** 

Maintenance

Selection Guide Half Mirror Cube Half Mirror Plate **Application Note Beamsplitters Harmonic Separator Beam Samplers** 

Others



Front surface: Uncoated

Front Surfac

t

w

Rear Surface

BS4

• To prevent ghost, wedged substrate is used with rear surface AR coating.

Rear surface: Visible multi-layer anti-reflection coating

Tolerance

Diameter  $\phi D^{+0}_{-0.1}$ Thickness t ±0.1

Beam Samplers

of the entire beam.

plate beam splitters.

Schematic

Angle of Incidence 45

**Outline Drawing** 

φD

multi-layer anti-reflection.

| Specifications                                    |                                                                                      |
|---------------------------------------------------|--------------------------------------------------------------------------------------|
| Material                                          | BK7                                                                                  |
| Surface Flatness                                  | λ/10                                                                                 |
| Coating                                           | Front Surface: Uncoated<br>Rear Surface: Visible multi-layer anti-reflection coating |
| Incident angle                                    | 45°                                                                                  |
| Divergence ratio<br>(reflectance : transmittance) | 5:95<br>(The average value of the P-Polarization and the S-Polarization)             |
| Laser Damage Threshold                            | 4J/cm <sup>2</sup><br>(Laser pulse width 4ns, repetition frequency 20Hz)             |
| Surface Quality<br>(Scratch-Dig)                  | 10–5                                                                                 |
| Clear aperture                                    | 90% of actual aperture                                                               |

RoHS

Catalog W3025

#### Guide

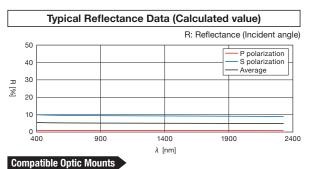
A beam sampler behaves like a plate beam splitter, it has the ability to reflect approximately 5.2%

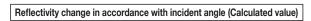
• Uncoated surfaces of optical parallels or wedged substrates are reflection surfaces. The rear surfaces are coated with

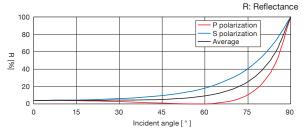
• These products have beam deviations at transmission and ghost by rear surface reflections due to the characteristics of

Please contact our International Sales Division for customized products. (Customized on size, wavelength or R:T, etc.) Reference B069

For a guarantee in reflected wavefront error or transmitted wavefront error, please contact our International Sales Division.


An arrow mark will be printed on the thick side of the wedge plate to indicate the surface of the mirror.


#### Attention


- The reflectance of 5.2% is the value when the material is BK7 and the input beam is unpolarized or circularly polarized.
- The beam deviation at transmission of a wedged beam splitter is large compared with beam splitter made of optical parallel.
- The amount of beam deviation of a beamsplitter depends on thickness of the substrate and the wavelength/the incident angle of the input beam.
- Be sure to wear laser safety goggles when checking optical path and adjusting optical axis.



| <i>φ</i> 30· <i>φ</i> 50 |                          |                     |                     |                  |
|--------------------------|--------------------------|---------------------|---------------------|------------------|
| Part Number              | Wavelength Range<br>[nm] | Diameter φD<br>[mm] | Thickness t<br>[mm] | Parallelism<br>W |
| BS4-25.4C03-10-550       | 400 - 700                | φ25.4               | 3                   | <5″              |
| BS4-30C03-10-550         | 400 – 700                | <i>ф</i> 30         | 3                   | <5″              |
| BS4-30C05-10W-550        | 400 – 700                | φ30                 | 5                   | 1°±5′            |
| BS4-50C05-10-550         | 400 – 700                | φ50                 | 5                   | <5″              |
| BS4-50C08-10W-550        | 400 – 700                | φ50                 | 8                   | 1°±5′            |







BHAN-30S, -50S / MHG-MP25-NL, MP30-NL





Application Systems

**Optics &** 

Coatings

**Optical** 

Holders

Bases

Manual Stages

Actuators

Motoeized Stages

Light Sources

Index

Guide

Mirrors

**Beamsplitters** 

**Multi-Element Optics** 

Substrates/Windows

**Ontical Data** 

Maintenance

Selection Guide

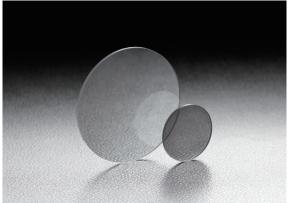
Half Mirror Cube

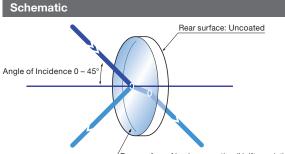
Half Mirror Plate

**Application Note** Beamsplitters Harmonic Separator **Beam Samplers** Others

Polarizers

Lenses

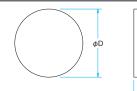

Filters

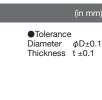

Prisms

The polka dot beam splitter is a beam splitter that has been made by the aluminum coating of halftone dots (polka dots) on the glass substrate.

It has a low dependence on the incident angle and can be used in a wide range of wavelengths from ultraviolet region to infrared region.

- Reflectance to transmittance ratio has been adjusted by the area ratio of the points that have been coated.
- Unlike the beam splitter of the dielectric type, in spite of the change in the incident angle, the reflectance and transmittance ratio does not alter.
- There are two types of the outer diameter like \$\phi25.4mm\$ and \$\phi50.8mm\$ and three types of reflectance to transmittance ratio such as 7:3, 5:5 and 3:7.



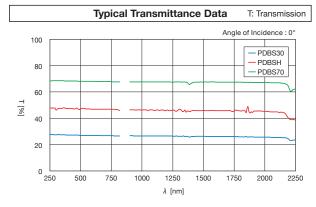

Rear surface: Aluminum coating (Halftone dot)

Surface enlargement

#### **Outline Drawing**






| Specifications                 |                                                  |
|--------------------------------|--------------------------------------------------|
| Material                       | Synthetic fused silica                           |
| Parallelism                    | <3′                                              |
| Coating                        | Front Surface: AI+MgF2<br>Rear Surface: Uncoated |
| Recommended angle of incidence | 0 – 45°                                          |
| Wavelength range               | 250 – 2200nm                                     |
| Surface Quality (Scratch-Dig)  | 80–50                                            |
| Dot pitch                      | 0.3mm                                            |
| Clear aperture                 | Circle except surrounding 1.5mm                  |

#### Guide

We can also offer different sizes, wavelengths and branching ratios

#### Attention

- When used with a laser beam with high interference, diffraction
- occurs.
- By the effect of the refractive index and the thickness of the substrate, the optical path of the transmitted light over the incident light will move by 0.5 extent parallel.
- When the incident beam diameter is very thin, it is not possible to separate into the split ratio.
- Do not clean with water or solvents. It may cause surface deterioration.



| Specifications  |                             |                        |                     |                                                                          |
|-----------------|-----------------------------|------------------------|---------------------|--------------------------------------------------------------------------|
| Part Number     | Reflectance : Transmittance | Diameter<br>¢D<br>[mm] | Thickness t<br>[mm] | Transmission<br>(Wavelength Range 555nm, Angle of Incidence : 0°)<br>[%] |
| PDBS70-25.4C1.5 | 70 : 30                     | φ25.4                  | 1.5                 | 30 <sup>+0</sup> -5                                                      |
| PDBS70-50.8C1.5 | 70 : 30                     | φ50.8                  | 1.5                 | 30 <sup>+0</sup> -5                                                      |
| PDBSH-25.4C1.5  | 50 : 50                     | φ25.4                  | 1.5                 | 50 <sup>+0</sup> -5                                                      |
| PDBSH-50.8C1.5  | 50 : 50                     | φ50.8                  | 1.5                 | 50 <sup>±0</sup>                                                         |
| PDBS30-25.4C1.5 | 30 : 70                     | φ25.4                  | 1.5                 | 70 <sup>±0</sup> <sub>-5</sub>                                           |
| PDBS30-50.8C1.5 | 30 : 70                     | φ50.8                  | 1.5                 | 70 <sup>±0</sup> <sub>-5</sub>                                           |

#### Compatible Optic Mounts

P25-NL, MP50.8-NL / MHAN-25.4S, -50.8S

that are not mentioned in the catalog. 1ce> B069

- When light is incident, scattering light by the halftone dot occurs.
- Please use in the environments which are non-condensing and less dust. If the dust or dirt is deposited, please do not blow but blow it off gently with dried air.

WEB http://www.sigma-koki.com/english/ E-mail international@sigma-koki.com TEL +81-3-5638-8228 FAX +81-3-5638-6550

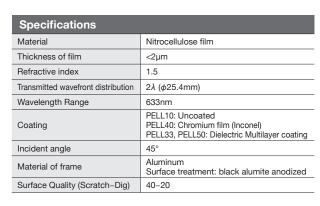


RoHS

By using the thin film in (as) a beam splitter, it is possible to remove the shift of the transmitted beam and the ghost image due to backside reflection. In addition, it can also be used without changing the wavelength dispersion in ultrashort pulse laser, to separate laser beam.

- Since it is used a thin film with a thickness of 2um or less, (Therefore) in case of the absence of the film the difference of
  optical path length (between the absence of the film) will be controlled to (less than) 1um or less.
- It does not (is never) occur that the beam will be divided into two by the back reflection and surface reflection. And the ghost of back reflection will not occur to the image being reflected by the pellicle.
- Because it can be used at high effective diameter of φ101.6mm, it can also be used to a large optical system of the effective diameter.
- It is available to provide such as;

"PELL50" the dielectric multilayer coating that will divide into the (1:1) transmittance and reflectance at a 1:1 ratio, "PELL40" chromium film that has a small change in the dividing (branching) ratio of the transmittance and reflectance due to the wavelength. (is small,)


"PELL33" a dielectric multilayer coating that will (to) divide (branch) into the (1:2 ratio) transmittance and reflectance at a 1:2 ratio, and "PELL10" can be used as a beam sampler.



Metal frame

Film (with coating)

Transmitted light



#### Attention

- Pellicle is very easy to tear. Do not press with your fingers and poke with pointed objects.
- Pellicle is easy to be scratched. Do not rub with the paper. Please blow dirt or dust off with an air duster.
- Because this film is an organic, it can not be used for high-power laser.
- Because it is a product that has stuck to the film, there is a possibility that the beam of reflected light is divergence or convergence.
- When it is used in large beam, interference fringes due to the front and back side surface will occur in the reflected beam.

# Beamsplitters Polarizers Lenses

Schematic

Incident ligh

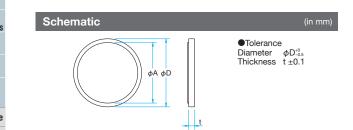
Reflected light

Multi-Element Optics

Filters

Prisms

Substrates/Windows


Optical Data Maintenance

Selection Guide Half Mirror Cube

Half Mirror Plate Application Note Beamsplitters Harmonic Separator

**Beam Samplers** 

Others



| Part Number      | Diameter<br><i>p</i> D | Clear aperture<br>$\phi A$ | Thickness<br>t | Reflectance at 632.8nm<br>(The average value of the P-Polarization and the S-Polarization) |     |
|------------------|------------------------|----------------------------|----------------|--------------------------------------------------------------------------------------------|-----|
|                  | [mm]                   | [mm]                       | [mm]           | [%]                                                                                        | [%] |
| PELL10-34.9-633  | φ34.9                  | φ25.4                      | 4.8            | 8                                                                                          | 92  |
| PELL10-63.5-633  | φ63.5                  | φ50.8                      | 6.4            | 8                                                                                          | 92  |
| PELL10-114.3-633 | ¢114.3                 | φ101.6                     | 6.4            | 8                                                                                          | 92  |
| PELL33-34.9-633  | φ34.9                  | φ25.4                      | 4.8            | 33                                                                                         | 67  |
| PELL33-63.5-633  | φ63.5                  | φ50.8                      | 6.4            | 33                                                                                         | 67  |
| PELL33-114.3-633 | φ114.3                 | φ101.6                     | 6.4            | 33                                                                                         | 67  |
| PELL40-34.9-633  | φ34.9                  | φ25.4                      | 4.8            | 40                                                                                         | 40  |
| PELL40-63.5-633  | φ63.5                  | φ50.8                      | 6.4            | 40                                                                                         | 40  |
| PELL40-114.3-633 | φ114.3                 | φ101.6                     | 6.4            | 40                                                                                         | 40  |
| PELL50-34.9-633  | φ34.9                  | φ25.4                      | 4.8            | 50                                                                                         | 50  |
| PELL50-63.5-633  | φ63.5                  | φ50.8                      | 6.4            | 50                                                                                         | 50  |
| PELL50-114.3-633 | φ114.3                 | φ101.6                     | 6.4            | 50                                                                                         | 50  |

Optics & Optical Coatings

Application Systems

Holders

Bases

Manual

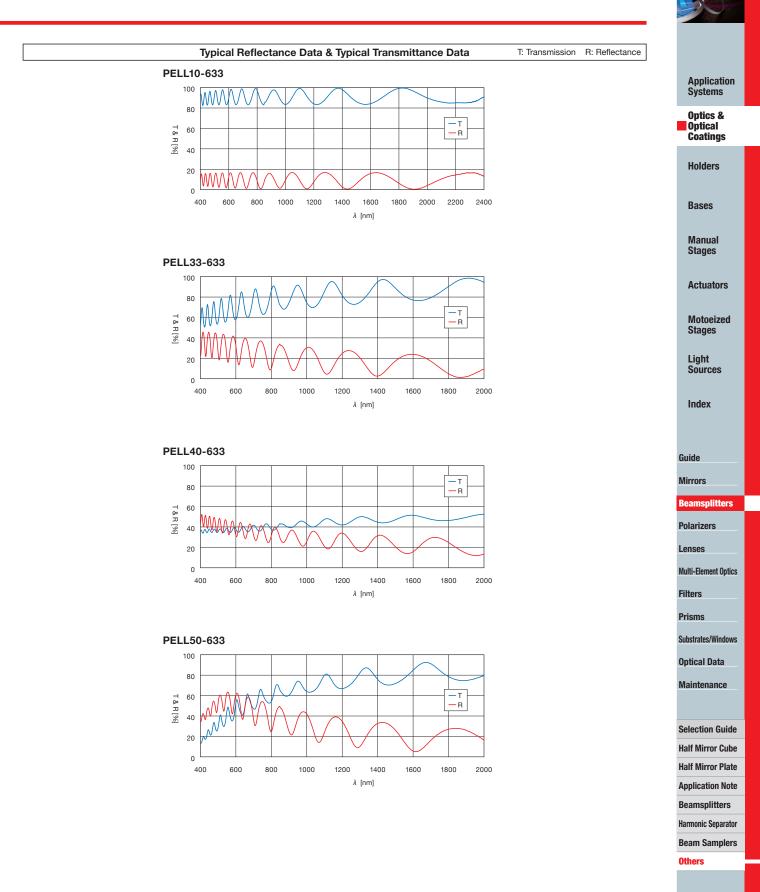
Stages

**Actuators** 

Motoeized

Stages

Light


Index

Guide

Mirrors

Sources





Optics & Optical Coatings



Optics & Optical Coatings

#### Holders

Bases

Manual Stages

Actuators

Motoeized Stages

Light Sources

Index

Guide

Mirrors

Beamsplitters

Polarizers

Lenses

Multi-Element Optics

Filters

Prisms

Substrates/Windows

**Optical Data** 

Maintenance

Selection Guide Half Mirror Cube Half Mirror Plate Application Note Beamsplitters Harmonic Separator Beam Samplers Others